Suppr超能文献

肋间腱器官对延髓呼吸神经元膜电位的突触效应。

Synaptic effects of intercostal tendon organs on membrane potentials of medullary respiratory neurons.

作者信息

Bolser D C, Remmers J E

机构信息

Department of Medicine, University of Calgary Health Sciences Center, Alberta, Canada.

出版信息

J Neurophysiol. 1989 May;61(5):918-26. doi: 10.1152/jn.1989.61.5.918.

Abstract
  1. Stimulation of intercostal muscle tendon organs or their afferent fibers reduces medullary inspiratory neuron activity, decreases motor output to inspiratory muscles, and increases the activity of expiratory laryngeal motoneurons. The present study examines the synaptic mechanisms underlying these changes to obtain information about medullary neurons that participate in the afferent limb of this reflex pathway. 2. Membrane potentials of medullary respiratory neurons were recorded in decerebrate paralyzed cats. Postsynaptic potentials (PSPs) elicited in these neurons by intercostal nerve stimulation (INS) were compared before and after intracellular iontophoresis of chloride ions. After chloride injection, the normal hyperpolarization caused by inhibitory (I) PSPs is "reversed" to depolarization. 3. In inspiratory neurons, reversal of IPSPs by chloride injection also reversed hyperpolarization produced by INS when applied during any portion of the respiratory cycle. This observation suggests that increased chloride conductance of the postsynaptic membrane mediated the inhibition. Further, it is very likely that the last-order interneuron in the afferent pathway must be excited by INS and alter inspiratory neuron activity via an inhibitory synapse. The linear relationship between the amplitude of the INS induced PSP and membrane potential of inspiratory neurons provided evidence that neurons in the afferent pathway are not respiratory modulated. 4. The membranes of expiratory vagal motoneurons and post-inspiratory neurons were depolarized by INS during all portions of the respiratory cycle before IPSP reversal. Reversal of IPSPs affected neither this depolarization of expiratory vagal motoneurons during stage I and II expiration nor that of post-inspiratory neurons during stage I expiration. Thus this depolarization probably resulted from synaptic excitation.(ABSTRACT TRUNCATED AT 250 WORDS)
摘要
  1. 刺激肋间肌腱器官或其传入纤维会降低延髓吸气神经元的活动,减少对吸气肌的运动输出,并增加呼气性喉运动神经元的活动。本研究探讨这些变化背后的突触机制,以获取参与该反射通路传入支的延髓神经元的信息。2. 在去大脑麻痹的猫中记录延髓呼吸神经元的膜电位。在对氯离子进行细胞内离子电泳前后,比较肋间神经刺激(INS)在这些神经元中引发的突触后电位(PSP)。注入氯离子后,由抑制性(I)PSP引起的正常超极化会“反转”为去极化。3. 在吸气神经元中,注入氯离子使抑制性突触后电位反转,也会反转在呼吸周期任何阶段施加INS时产生的超极化。这一观察结果表明,突触后膜氯离子电导增加介导了这种抑制作用。此外,传入通路中的最后一级中间神经元很可能必须被INS兴奋,并通过抑制性突触改变吸气神经元的活动。INS诱导的PSP幅度与吸气神经元膜电位之间的线性关系表明,传入通路中的神经元不受呼吸调节。4. 在抑制性突触后电位反转之前,呼气性迷走运动神经元和吸气后神经元的膜在呼吸周期的所有阶段都因INS而去极化。抑制性突触后电位的反转既不影响呼气第一和第二阶段呼气性迷走运动神经元的这种去极化,也不影响呼气第一阶段吸气后神经元的去极化。因此,这种去极化可能是由突触兴奋引起的。(摘要截选至250词)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验