Suppr超能文献

以主力军为例:芽殖酵母中的非同源末端连接。

Consider the workhorse: Nonhomologous end-joining in budding yeast.

作者信息

Emerson Charlene H, Bertuch Alison A

机构信息

a Graduate Program in Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

b Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

出版信息

Biochem Cell Biol. 2016 Oct;94(5):396-406. doi: 10.1139/bcb-2016-0001. Epub 2016 Mar 31.

Abstract

DNA double strand breaks (DSBs) are dangerous sources of genome instability and must be repaired by the cell. Nonhomologous end-joining (NHEJ) is an evolutionarily conserved pathway to repair DSBs by direct ligation of the ends, with no requirement for a homologous template. While NHEJ is the primary DSB repair pathway in mammalian cells, conservation of the core NHEJ factors throughout eukaryotes makes the pathway attractive for study in model organisms. The budding yeast, Saccharomyces cerevisiae, has been used extensively to develop a functional picture of NHEJ. In this review, we will discuss the current understanding of NHEJ in S. cerevisiae. Topics include canonical end-joining, alternative end-joining, and pathway regulation. Particular attention will be paid to the NHEJ mechanism involving core factors, including Yku70/80, Dnl4, Lif1, and Nej1, as well as the various factors implicated in the processing of the broken ends. The relevance of chromatin dynamics to NHEJ will also be discussed. This review illustrates the use of S. cerevisiae as a powerful system to understand the principles of NHEJ, as well as in pioneering the direction of the field.

摘要

DNA双链断裂(DSB)是基因组不稳定的危险因素,细胞必须对其进行修复。非同源末端连接(NHEJ)是一种进化上保守的途径,通过直接连接末端来修复DSB,无需同源模板。虽然NHEJ是哺乳动物细胞中主要的DSB修复途径,但核心NHEJ因子在整个真核生物中的保守性使得该途径在模式生物研究中具有吸引力。芽殖酵母酿酒酵母已被广泛用于构建NHEJ的功能图谱。在这篇综述中,我们将讨论目前对酿酒酵母中NHEJ的理解。主题包括经典末端连接、替代末端连接和途径调控。将特别关注涉及核心因子的NHEJ机制,包括Yku70/80、Dnl4、Lif1和Nej1,以及参与断裂末端加工的各种因子。还将讨论染色质动力学与NHEJ的相关性。这篇综述说明了酿酒酵母作为一个强大的系统在理解NHEJ原理以及开拓该领域方向方面的应用。

相似文献

1
Consider the workhorse: Nonhomologous end-joining in budding yeast.
Biochem Cell Biol. 2016 Oct;94(5):396-406. doi: 10.1139/bcb-2016-0001. Epub 2016 Mar 31.
3
Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination.
Nat Struct Mol Biol. 2007 Jul;14(7):639-46. doi: 10.1038/nsmb1261. Epub 2007 Jun 24.
4
Yeast Nej1 is a key participant in the initial end binding and final ligation steps of nonhomologous end joining.
J Biol Chem. 2011 Feb 11;286(6):4931-40. doi: 10.1074/jbc.M110.195024. Epub 2010 Dec 13.
5
Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae.
Genetics. 2008 Mar;178(3):1237-49. doi: 10.1534/genetics.107.083535. Epub 2008 Feb 3.
7
Ku DNA End-Binding Activity Promotes Repair Fidelity and Influences End-Processing During Nonhomologous End-Joining in .
Genetics. 2018 May;209(1):115-128. doi: 10.1534/genetics.117.300672. Epub 2018 Mar 2.
8
The non-homologous end-joining factor Nej1 inhibits resection mediated by Dna2-Sgs1 nuclease-helicase at DNA double strand breaks.
J Biol Chem. 2017 Sep 1;292(35):14576-14586. doi: 10.1074/jbc.M117.796011. Epub 2017 Jul 5.
9
Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae.
Mutat Res. 2000 Jun 30;451(1-2):71-89. doi: 10.1016/s0027-5107(00)00041-5.
10
Saccharomyces cerevisiae DNA ligase IV supports imprecise end joining independently of its catalytic activity.
PLoS Genet. 2013 Jun;9(6):e1003599. doi: 10.1371/journal.pgen.1003599. Epub 2013 Jun 27.

引用本文的文献

3
Loss of Heterozygosity associated with ubiquitous environments in yeast.
PLoS Genet. 2025 May 12;21(5):e1011692. doi: 10.1371/journal.pgen.1011692. eCollection 2025 May.
4
Molecular mechanisms of extrachromosomal circular DNA formation.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf122.
7
Exo1 cooperates with Tel1/ATM in promoting recombination events at DNA replication forks.
iScience. 2024 Jun 28;27(8):110410. doi: 10.1016/j.isci.2024.110410. eCollection 2024 Aug 16.
9
Dissecting quantitative trait nucleotides by saturation genome editing.
bioRxiv. 2024 Feb 2:2024.02.02.577784. doi: 10.1101/2024.02.02.577784.
10
The biological principles and advanced applications of DSB repair in CRISPR-mediated yeast genome editing.
Synth Syst Biotechnol. 2023 Aug 30;8(4):584-596. doi: 10.1016/j.synbio.2023.08.007. eCollection 2023 Dec.

本文引用的文献

1
DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6907-16. doi: 10.1073/pnas.1507833112. Epub 2015 Nov 25.
2
An Overview of the Molecular Mechanisms of Recombinational DNA Repair.
Cold Spring Harb Perspect Biol. 2015 Nov 2;7(11):a016410. doi: 10.1101/cshperspect.a016410.
3
Programmed DNA breaks in lymphoid cells: repair mechanisms and consequences in human disease.
Immunology. 2016 Jan;147(1):11-20. doi: 10.1111/imm.12547. Epub 2015 Nov 18.
4
Repair Pathway Choices and Consequences at the Double-Strand Break.
Trends Cell Biol. 2016 Jan;26(1):52-64. doi: 10.1016/j.tcb.2015.07.009. Epub 2015 Oct 1.
5
Recruitment and activation of the ATM kinase in the absence of DNA-damage sensors.
Nat Struct Mol Biol. 2015 Sep;22(9):736-43. doi: 10.1038/nsmb.3072. Epub 2015 Aug 17.
6
DNA REPAIR. Mus81 and converging forks limit the mutagenicity of replication fork breakage.
Science. 2015 Aug 14;349(6249):742-7. doi: 10.1126/science.aaa8391.
8
Interplay between Ku and Replication Protein A in the Restriction of Exo1-mediated DNA Break End Resection.
J Biol Chem. 2015 Jul 24;290(30):18806-16. doi: 10.1074/jbc.M115.660191. Epub 2015 Jun 11.
9
Error-Prone Repair of DNA Double-Strand Breaks.
J Cell Physiol. 2016 Jan;231(1):15-24. doi: 10.1002/jcp.25053.
10
Spindle Checkpoint Factors Bub1 and Bub2 Promote DNA Double-Strand Break Repair by Nonhomologous End Joining.
Mol Cell Biol. 2015 Jul;35(14):2448-63. doi: 10.1128/MCB.00007-15. Epub 2015 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验