Afifi Akram, El-Rabbany Ahmed
Department of Civil Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada.
Sensors (Basel). 2016 May 28;16(6):779. doi: 10.3390/s16060779.
This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada's GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart.
本文介绍了一种新的双频精密单点定位(PPP)模型,该模型结合了来自三种不同全球导航卫星系统(GNSS)星座的观测数据,即GPS、伽利略和北斗。组合来自不同GNSS系统的测量数据会引入额外的偏差,包括系统间偏差和硬件延迟,这需要进行严格建模。我们的模型基于非差和星间单差(BSSD)线性组合。BSSD线性组合消除了一些与接收机相关的偏差,包括接收机时钟误差和接收机振荡器的非零初始相位偏差。形成BSSD线性组合需要一颗参考卫星,该卫星可以从GPS、伽利略和北斗系统中的任何一个中选择。本文测试了三种BSSD场景;每种场景都考虑了来自不同GNSS星座的一颗参考卫星。加拿大自然资源部的GPSPace PPP软件经过修改,以实现GPS、伽利略和北斗的组合PPP解算,并处理新引入的偏差。总共处理了在四个不同IGS站收集的四个数据集,以验证所开发的PPP模型。国际GNSS服务多GNSS实验(IGS-MGEX)网络的精确卫星轨道和时钟产品用于在后处理PPP模式下校正GPS、伽利略和北斗的测量数据。通过使用IGS实时服务(RTS)进行卫星轨道和时钟校正,还获得了实时PPP解算结果,在后续内容中称为RT-PPP。然而,RT-PPP解算仅使用GPS和伽利略观测数据,因为目前RTS-IGS卫星产品不适用于北斗系统。所有后处理和实时PPP解算结果都与传统的仅使用GPS的非差对应解进行了比较。结果表明,在后处理模式下组合GPS、伽利略和北斗观测数据,与仅使用GPS的对应解相比,PPP收敛时间缩短了25%,与所使用的线性组合无关。与仅使用GPS的PPP解相比,使用BSSD线性组合可将估计定位参数的精度提高约25%。此外,对于BSSD模型,解算收敛时间缩短至10分钟,与仅使用GPS的PPP解相比,缩短了约50%。另一方面,GNSS RT-PPP解算结果显示出与仅使用GPS的对应解相似的收敛时间和精度。