Fatangare Amol, Svatoš Aleš
Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology Jena, Germany.
Front Plant Sci. 2016 May 9;7:483. doi: 10.3389/fpls.2016.00483. eCollection 2016.
The aim of this review article is to explore and establish the current status of 2-deoxy-2-fluoro-D-glucose (FDG) applications in plant imaging. In the present article, we review the previous literature on its experimental merits to formulate a consistent and inclusive picture of FDG applications in plant-imaging research. 2-deoxy-2-fluoro-D-glucose is a [(18)F]fluorine-labeled glucose analog in which C-2 hydroxyl group has been replaced by a positron-emitting [(18)F] radioisotope. As FDG is a positron-emitting radiotracer, it could be used in in vivo imaging studies. FDG mimics glucose chemically and structurally. Its uptake and distribution are found to be similar to those of glucose in animal models. FDG is commonly used as a radiotracer for glucose in medical diagnostics and in vivo animal imaging studies but rarely in plant imaging. Tsuji et al. (2002) first reported FDG uptake and distribution in tomato plants. Later, Hattori et al. (2008) described FDG translocation in intact sorghum plants and suggested that it could be used as a tracer for photoassimilate translocation in plants. These findings raised interest among other plant scientists, which has resulted in a recent surge of articles involving the use of FDG as a tracer in plants. There have been seven studies describing FDG-imaging applications in plants. These studies describe FDG applications ranging from monitoring radiotracer translocation to analyzing solute transport, root uptake, photoassimilate tracing, carbon allocation, and glycoside biosynthesis. Fatangare et al. (2015) recently characterized FDG metabolism in plants; such knowledge is crucial to understanding and validating the application of FDG in plant imaging research. Recent FDG studies significantly advance our understanding of FDG translocation and metabolism in plants but also raise new questions. Here, we take a look at all the previous results to form a comprehensive picture of FDG translocation, metabolism, and applications in plants. In conclusion, we summarize current knowledge, discuss possible implications and limitations of previous studies, point to open questions in the field, and comment on the outlook for FDG applications in plant imaging.
这篇综述文章的目的是探索并确立2-脱氧-2-氟-D-葡萄糖(FDG)在植物成像中的应用现状。在本文中,我们回顾了之前有关其实验优点的文献,以便勾勒出FDG在植物成像研究中应用的连贯且全面的情况。2-脱氧-2-氟-D-葡萄糖是一种[(18)F]氟标记的葡萄糖类似物,其中C-2羟基已被发射正电子的[(18)F]放射性同位素取代。由于FDG是一种发射正电子的放射性示踪剂,它可用于体内成像研究。FDG在化学和结构上模拟葡萄糖。在动物模型中发现其摄取和分布与葡萄糖相似。FDG在医学诊断和体内动物成像研究中通常用作葡萄糖的放射性示踪剂,但在植物成像中很少使用。Tsuji等人(2002年)首次报道了FDG在番茄植株中的摄取和分布。后来,Hattori等人(2008年)描述了FDG在完整高粱植株中的转运,并表明它可作为植物中光合产物转运的示踪剂。这些发现引起了其他植物科学家的兴趣,导致最近涉及将FDG用作植物示踪剂的文章激增。已有七项研究描述了FDG在植物中的成像应用。这些研究描述了FDG的应用范围,从监测放射性示踪剂转运到分析溶质运输、根系吸收、光合产物追踪、碳分配和糖苷生物合成。Fatangare等人(2015年)最近对植物中FDG的代谢进行了表征;此类知识对于理解和验证FDG在植物成像研究中的应用至关重要。最近的FDG研究不仅极大地推进了我们对FDG在植物中的转运和代谢的理解,也提出了新问题。在此,我们审视所有先前的结果,以形成关于FDG在植物中的转运、代谢和应用的全面情况。总之,我们总结了当前的知识,讨论了先前研究可能的影响和局限性,指出了该领域的未决问题,并对FDG在植物成像中的应用前景进行了评论。