Suppr超能文献

铁电隧道结中的编码、训练与检索

Encoding, training and retrieval in ferroelectric tunnel junctions.

作者信息

Xu Hanni, Xia Yidong, Xu Bo, Yin Jiang, Yuan Guoliang, Liu Zhiguo

机构信息

National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and Department of Materials Science and Engineering, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, China.

School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Sci Rep. 2016 May 31;6:27022. doi: 10.1038/srep27022.

Abstract

Ferroelectric tunnel junctions (FTJs) are quantum nanostructures that have great potential in the hardware basis for future neuromorphic applications. Among recently proposed possibilities, the artificial cognition has high hopes, where encoding, training, memory solidification and retrieval constitute a whole chain that is inseparable. However, it is yet envisioned but experimentally unconfirmed. The poor retention or short-term store of tunneling electroresistance, in particular the intermediate states, is still a key challenge in FTJs. Here we report the encoding, training and retrieval in BaTiO3 FTJs, emulating the key features of information processing in terms of cognitive neuroscience. This is implemented and exemplified through processing characters. Using training inputs that are validated by the evolution of both barrier profile and domain configuration, accurate recalling of encoded characters in the retrieval stage is demonstrated.

摘要

铁电隧道结(FTJs)是一种量子纳米结构,在未来神经形态应用的硬件基础方面具有巨大潜力。在最近提出的可能性中,人工认知备受期待,其中编码、训练、记忆固化和检索构成了一个不可分割的完整链条。然而,这只是设想,尚未得到实验证实。隧道电阻的保持性差或短期存储问题,尤其是中间状态,仍然是铁电隧道结面临的关键挑战。在此,我们报告了在BaTiO3铁电隧道结中的编码、训练和检索,从认知神经科学的角度模拟了信息处理的关键特征。这通过处理字符得以实现和例证。利用由势垒轮廓和畴结构演变验证的训练输入,展示了在检索阶段对编码字符的准确召回。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26c5/4886643/fbece3a1e48c/srep27022-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验