Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States.
Environ Sci Technol. 2016 Jul 5;50(13):6964-73. doi: 10.1021/acs.est.6b00810. Epub 2016 Jun 14.
Aqueous aggregation processes can significantly impact function, effective toxicity, environmental transport, and ultimate fate of advanced nanoscale materials, including graphene and graphene oxide (GO). In this work, we have synthesized flat graphene oxide (GO) and five physically crumpled GOs (CGO, with different degrees of thermal reduction, and thus oxygen functionality) using an aerosol method, and characterized the evolution of surface chemistry and morphology using a suite of spectroscopic (UV-vis, FTIR, XPS) and microscopic (AFM, SEM, and TEM) techniques. For each of these materials, critical coagulation concentrations (CCC) were determined for NaCl, CaCl2, and MgCl2 electrolytes. The CCCs were correlated with material ζ-potentials (R(2) = 0.94-0.99), which were observed to be mathematically consistent with classic DLVO theory. We further correlated CCC values with CGO chemical properties including C/O ratios, carboxyl group concentrations, and C-C fractions. For all cases, edge-based carboxyl functional groups are highly correlated to observed CCC values (R(2) = 0.89-0.95). Observations support the deprotonation of carboxyl groups with low acid dissociation constants (pKa) as the main contributors to ζ-potentials and thus material aqueous stability. We also observe CCC values to significantly increase (by 18-80%) when GO is physically crumpled as CGO. Taken together, the findings from both physical and chemical analyses clearly indicate that both GO shape and surface functionality are critical to consider with regard to understanding fundamental material behavior in water.
水合聚集过程会显著影响先进纳米材料(包括石墨烯和氧化石墨烯(GO))的功能、有效毒性、环境迁移和最终归宿。在这项工作中,我们使用气溶胶法合成了扁平氧化石墨烯(GO)和 5 种物理皱缩的 GO(CGO,具有不同程度的热还原,因此具有不同的含氧官能团),并使用一系列光谱(UV-vis、FTIR、XPS)和显微镜(AFM、SEM 和 TEM)技术来表征表面化学和形貌的演变。对于这些材料中的每一种,都确定了 NaCl、CaCl2 和 MgCl2 电解质的临界聚沉浓度(CCC)。CCC 与材料 ζ 电位相关(R2=0.94-0.99),这与经典 DLVO 理论一致。我们还将 CCC 值与 CGO 的化学性质(包括 C/O 比、羧基浓度和 C-C 分数)相关联。对于所有情况,基于边缘的羧基官能团与观察到的 CCC 值高度相关(R2=0.89-0.95)。观察结果支持低酸离解常数(pKa)的羧基基团的去质子化是 ζ 电位和材料水稳定性的主要贡献者。我们还观察到,当 GO 被物理皱缩为 CGO 时,CCC 值会显著增加(增加 18-80%)。综合来看,物理和化学分析的结果清楚地表明,GO 的形状和表面官能团对于理解材料在水中的基本行为是至关重要的。