Institut de Biologie Physico-Chimique, UMR 7141 CNRS-UPMC, 13 rue P. et M. Curie 75005, Paris, France.
Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via Celoria 26, 20133 Milan, Italy.
Nat Plants. 2016 Apr 4;2:16031. doi: 10.1038/nplants.2016.31.
Photosynthesis converts sunlight into biologically useful compounds, thus fuelling practically the entire biosphere. This process involves two photosystems acting in series powered by light harvesting complexes (LHCs) that dramatically increase the energy flux to the reaction centres. These complexes are the main targets of the regulatory processes that allow photosynthetic organisms to thrive across a broad range of light intensities. In microalgae, one mechanism for adjusting the flow of energy to the photosystems, state transitions, has a much larger amplitude than in terrestrial plants, whereas thermal dissipation of energy, the dominant regulatory mechanism in plants, only takes place after acclimation to high light. Here we show that, at variance with recent reports, microalgal state transitions do not dissipate light energy but redistribute it between the two photosystems, thereby allowing a well-balanced influx of excitation energy.
光合作用将阳光转化为生物可用的化合物,从而为几乎整个生物圈提供能量。这个过程涉及两个光系统串联作用,由光捕获复合物(LHCs)提供动力,这些复合物显著增加了反应中心的能量通量。这些复合物是调节过程的主要目标,这些调节过程使光合生物能够在广泛的光照强度范围内茁壮成长。在微藻中,一种调节能量流向光系统的机制——状态转变,其幅度比陆地植物大得多,而在植物中占主导地位的调节机制——热能耗散,只有在适应高光后才会发生。在这里,我们表明,与最近的报道不同,微藻状态转变不会耗散光能,而是在两个光系统之间重新分配光能,从而使激发能的流入达到良好的平衡。