Suppr超能文献

基于分数阶傅里叶熵的多层感知器智能病理性脑检测系统

A Multilayer Perceptron Based Smart Pathological Brain Detection System by Fractional Fourier Entropy.

作者信息

Zhang Yudong, Sun Yi, Phillips Preetha, Liu Ge, Zhou Xingxing, Wang Shuihua

机构信息

School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.

Key Laboratory of Statistical Information Technology and Data Mining, State Statistics Bureau, Chengdu, Sichuan, 610225, China.

出版信息

J Med Syst. 2016 Jul;40(7):173. doi: 10.1007/s10916-016-0525-2. Epub 2016 Jun 2.

Abstract

This work aims at developing a novel pathological brain detection system (PBDS) to assist neuroradiologists to interpret magnetic resonance (MR) brain images. We simplify this problem as recognizing pathological brains from healthy brains. First, 12 fractional Fourier entropy (FRFE) features were extracted from each brain image. Next, we submit those features to a multi-layer perceptron (MLP) classifier. Two improvements were proposed for MLP. One improvement is the pruning technique that determines the optimal hidden neuron number. We compared three pruning techniques: dynamic pruning (DP), Bayesian detection boundaries (BDB), and Kappa coefficient (KC). The other improvement is to use the adaptive real-coded biogeography-based optimization (ARCBBO) to train the biases and weights of MLP. The experiments showed that the proposed FRFE + KC-MLP + ARCBBO achieved an average accuracy of 99.53 % based on 10 repetitions of K-fold cross validation, which was better than 11 recent PBDS methods.

摘要

这项工作旨在开发一种新型的病理性脑检测系统(PBDS),以协助神经放射科医生解读脑部磁共振(MR)图像。我们将这个问题简化为从健康大脑中识别出病理性大脑。首先,从每张脑部图像中提取12个分数阶傅里叶熵(FRFE)特征。接下来,我们将这些特征提交给一个多层感知器(MLP)分类器。针对MLP提出了两项改进。一项改进是确定最佳隐藏神经元数量的剪枝技术。我们比较了三种剪枝技术:动态剪枝(DP)、贝叶斯检测边界(BDB)和卡帕系数(KC)。另一项改进是使用自适应实数编码基于生物地理学的优化算法(ARCBBO)来训练MLP的偏差和权重。实验表明,基于10次K折交叉验证,所提出的FRFE + KC-MLP + ARCBBO平均准确率达到99.53%,优于最近的11种病理性脑检测系统方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验