Suppr超能文献

基于多层感知机的并行磁共振成像方法。

A parallel MR imaging method using multilayer perceptron.

机构信息

Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.

College of Medicine, Gachon University, Incheon, South Korea.

出版信息

Med Phys. 2017 Dec;44(12):6209-6224. doi: 10.1002/mp.12600. Epub 2017 Oct 23.

Abstract

PURPOSE

To reconstruct MR images from subsampled data, we propose a fast reconstruction method using the multilayer perceptron (MLP) algorithm.

METHODS AND MATERIALS

We applied MLP to reduce aliasing artifacts generated by subsampling in k-space. The MLP is learned from training data to map aliased input images into desired alias-free images. The input of the MLP is all voxels in the aliased lines of multichannel real and imaginary images from the subsampled k-space data, and the desired output is all voxels in the corresponding alias-free line of the root-sum-of-squares of multichannel images from fully sampled k-space data. Aliasing artifacts in an image reconstructed from subsampled data were reduced by line-by-line processing of the learned MLP architecture.

RESULTS

Reconstructed images from the proposed method are better than those from compared methods in terms of normalized root-mean-square error. The proposed method can be applied to image reconstruction for any k-space subsampling patterns in a phase encoding direction. Moreover, to further reduce the reconstruction time, it is easily implemented by parallel processing.

CONCLUSION

We have proposed a reconstruction method using machine learning to accelerate imaging time, which reconstructs high-quality images from subsampled k-space data. It shows flexibility in the use of k-space sampling patterns, and can reconstruct images in real time.

摘要

目的

为了从欠采样数据中重建磁共振图像,我们提出了一种使用多层感知机(MLP)算法的快速重建方法。

方法和材料

我们应用 MLP 来减少 k 空间中欠采样产生的混叠伪影。MLP 通过从训练数据中学习,将混叠的输入图像映射到期望的无混叠图像。MLP 的输入是来自欠采样 k 空间数据的多通道实部和虚部的混叠线的所有体素,期望的输出是来自完全采样 k 空间数据的多通道图像的总和平方根的相应无混叠线的所有体素。通过学习的 MLP 架构逐行处理,减少了从欠采样数据重建图像中的混叠伪影。

结果

与比较方法相比,所提出的方法重建的图像在归一化均方根误差方面更好。该方法可应用于任何相位编码方向的 k 空间欠采样模式的图像重建。此外,为了进一步减少重建时间,它可以通过并行处理轻松实现。

结论

我们提出了一种使用机器学习加速成像时间的重建方法,该方法可以从欠采样的 k 空间数据中重建高质量的图像。它在 k 空间采样模式的使用上具有灵活性,可以实时重建图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验