Suppr超能文献

用于改善锂阳极性能的独立铜纳米线网络集流器。

Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance.

机构信息

Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS Center for Excellence in Nanoscience, Department of Chemistry, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China.

出版信息

Nano Lett. 2016 Jul 13;16(7):4431-7. doi: 10.1021/acs.nanolett.6b01581. Epub 2016 Jun 9.

Abstract

Lithium metal is one of the most attractive anode materials for next-generation lithium batteries due to its high specific capacity and low electrochemical potential. However, the poor cycling performance and serious safety hazards, caused by the growth of dendritic and mossy lithium, has long hindered the application of lithium metal based batteries. Herein, we reported a rational design of free-standing Cu nanowire (CuNW) network to suppress the growth of dendritic lithium via accommodating the lithium metal in three-dimensional (3D) nanostructures. We demonstrated that as high as 7.5 mA h cm(-2) of lithium can be plated into the free-standing copper nanowire (CuNW) current collector without the growth of dendritic lithium. The lithium metal anode based on the CuNW exhibited high Coulombic efficiency (average 98.6% during 200 cycles) and outstanding rate performance owing to the suppression of lithium dendrite growth and high conductivity of CuNW network. Our results demonstrate that the rational nanostructural design of current collector could be a promising strategy to improve the performance of lithium metal anode enabling its application in next-generation lithium-metal based batteries.

摘要

金属锂因其高比容量和低电化学势而成为下一代锂电池最具吸引力的阳极材料之一。然而,枝晶和苔藓状锂的生长导致其循环性能差和严重的安全隐患,长期以来一直阻碍了基于金属锂的电池的应用。在此,我们通过将金属锂容纳在三维(3D)纳米结构中,设计了一种合理的独立式 Cu 纳米线(CuNW)网络来抑制枝晶锂的生长。我们证明,高达 7.5 mA h cm(-2) 的锂可以电镀到独立的铜纳米线(CuNW)集电器中,而不会出现枝晶锂的生长。基于 CuNW 的金属锂阳极由于抑制了锂枝晶的生长和 CuNW 网络的高导电性,表现出高库仑效率(200 次循环中平均为 98.6%)和出色的倍率性能。我们的结果表明,集电器的合理纳米结构设计可能是提高金属锂阳极性能的一种有前途的策略,使其能够应用于下一代基于锂金属的电池。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验