Li Dongdong, Yang Shengchen, Zheng Zijian, Lai Wen-Yong
State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Department of Materials Chemistry, Huzhou University, 1 Xueshi Road, Huzhou 313000, China.
Research (Wash D C). 2023 Nov 8;6:0267. doi: 10.34133/research.0267. eCollection 2023.
Metallic lithium represents a promising anode candidate to be utilized in future high-energy lithium batteries. However, the undesirable dendrite growth and fragile solid-electrolyte interphase (SEI) pose critical challenge for pursuing further practical application. In contrast to traditional approaches of using inert/lithiophilicity coating, here, we demonstrate a reverse strategy of introducing a highly conductive and lithophobic carbon fabric (CF) scaffold on lithium foil to guide a favorable nucleation site of lithium far away from the anode/separator interface. The CF scaffold with high conductivity can couple with inner electric field for achieving a uniform distribution of the lithium-ion flux, while the lithophobic feature offers the condition to guide the preferred deposition of lithium onto the underlying lithium foil, which greatly reduces the risk of dendrite-induced short circuits. Moreover, the SEI immersed in the CF scaffold is well supported by CF fibers and therefore exhibits extremely high stability during charge-discharge cycles. As a result, the lithium/CF anodes show >2,000-h stable cycling at 0.5 mA cm. Lithium metal batteries equipped with our lithium/CF anode deliver a high capacity retention of ~99.99% per cycle, i.e., retain ~97.3% capacity after 200 cycles. The unique interface-regulation strategy is versatile for various conductive scaffolds (e.g., ultrathin and ultralight conductive fabrics), exhibiting high superiority for highly safe lithium metal batteries.
金属锂是未来高能锂电池中一种很有前景的负极候选材料。然而,不良的枝晶生长和脆弱的固体电解质界面(SEI)对其进一步的实际应用构成了严峻挑战。与传统的使用惰性/亲锂性涂层的方法不同,在此,我们展示了一种反向策略,即在锂箔上引入高导电性且疏锂的碳纤维织物(CF)支架,以引导锂在远离负极/隔膜界面处形成有利的成核位点。具有高导电性的CF支架可与内部电场耦合,以实现锂离子通量的均匀分布,而疏锂特性为引导锂优先沉积到下面的锂箔上提供了条件,这大大降低了枝晶引发短路的风险。此外,浸入CF支架中的SEI受到CF纤维的良好支撑,因此在充放电循环过程中表现出极高的稳定性。结果,锂/CF负极在0.5 mA cm下显示出超过2000小时的稳定循环。配备我们的锂/CF负极的锂金属电池每循环具有约99.99%的高容量保持率,即在200次循环后保持约97.3%的容量。这种独特的界面调控策略对各种导电支架(如超薄和超轻导电织物)具有通用性,在高安全性锂金属电池方面表现出高度优越性。