IEEE Trans Cybern. 2017 Nov;47(11):3568-3582. doi: 10.1109/TCYB.2016.2570808. Epub 2016 Jun 1.
The alternating direction method of multipliers (ADMM) algorithm has been widely employed for distributed machine learning tasks. However, it suffers from several limitations, e.g., a relative low convergence speed, and an expensive time cost. To this end, in this paper, a novel method, namely the group-based ADMM (GADMM), is proposed for distributed linear classification. In particular, to accelerate the convergence speed and improve global consensus, a group layer is first utilized in GADMM to divide all the slave nodes into several groups. Then, all the local variables (from the slave nodes) are gathered in the group layer to generate different group variables. Finally, by using a weighted average method, the group variables are coordinated to update the global variable (from the master node) until the solution of the global problem is reached. According to the theoretical analysis, we found that: 1) GADMM can mathematically converge at the rate , where is the number of outer iterations and 2) by using the grouping methods, GADMM can improve the convergence speed compared with the distributed ADMM framework without grouping methods. Moreover, we systematically evaluate GADMM on four publicly available LIBSVM datasets. Compared with disADMM and stochastic dual coordinate ascent with alternating direction method of multipliers-ADMM, for distributed classification, GADMM is able to reduce the number of outer iterations, which leads to faster convergence speed and better global consensus. In particular, the statistical significance test has been experimentally conducted and the results validate that GADMM can significantly save up to 30% of the total time cost (with less than 0.6% accuracy loss) compared with disADMM on large-scale datasets, e.g., webspam and epsilon.
交替方向乘子法(ADMM)算法已被广泛应用于分布式机器学习任务中。然而,它存在一些局限性,例如相对较低的收敛速度和昂贵的时间成本。为此,本文提出了一种新的方法,即基于分组的 ADMM(GADMM),用于分布式线性分类。具体来说,为了加速收敛速度和提高全局一致性,首先在 GADMM 中使用分组层将所有从节点划分为若干组。然后,将所有的局部变量(从从节点)收集到分组层中,生成不同的组变量。最后,通过使用加权平均方法,协调组变量以更新全局变量(从主节点),直到达到全局问题的解。根据理论分析,我们发现:1)GADMM 可以以 的数学速率收敛,其中 是外迭代次数,2)通过使用分组方法,与没有分组方法的分布式 ADMM 框架相比,GADMM 可以提高收敛速度。此外,我们在四个公开的 LIBSVM 数据集上系统地评估了 GADMM。与 disADMM 和随机对偶坐标上升 ADMM 相比,对于分布式分类,GADMM 能够减少外迭代次数,从而实现更快的收敛速度和更好的全局一致性。特别是,实验进行了统计显著性检验,结果验证了在大规模数据集(例如 webspam 和 epsilon)上,与 disADMM 相比,GADMM 可以显著节省高达 30%的总时间成本(准确率损失小于 0.6%)。