Suppr超能文献

广义交替方向乘子法:新的理论见解与应用

Generalized Alternating Direction Method of Multipliers: New Theoretical Insights and Applications.

作者信息

Fang Ethan X, He Bingsheng, Liu Han, Yuan Xiaoming

机构信息

Department of Operations Research and Financial Engineering, Princeton University.

International Centre of Management Science and Engineering, and Department of Mathematics, Nanjing University, Nanjing, 210093, China. This author was supported by the NSFC Grant 91130007 and the MOEC fund 20110091110004.

出版信息

Math Program Comput. 2015 Jun;7(2):149-187. doi: 10.1007/s12532-015-0078-2. Epub 2015 Feb 6.

Abstract

Recently, the alternating direction method of multipliers (ADMM) has received intensive attention from a broad spectrum of areas. The generalized ADMM (GADMM) proposed by Eckstein and Bertsekas is an efficient and simple acceleration scheme of ADMM. In this paper, we take a deeper look at the linearized version of GADMM where one of its subproblems is approximated by a linearization strategy. This linearized version is particularly efficient for a number of applications arising from different areas. Theoretically, we show the worst-case 𝒪(1/) convergence rate measured by the iteration complexity ( represents the iteration counter) in both the ergodic and a nonergodic senses for the linearized version of GADMM. Numerically, we demonstrate the efficiency of this linearized version of GADMM by some rather new and core applications in statistical learning. Code packages in Matlab for these applications are also developed.

摘要

最近,乘子交替方向法(ADMM)受到了广泛领域的密切关注。Eckstein和Bertsekas提出的广义ADMM(GADMM)是一种高效且简单的ADMM加速方案。在本文中,我们深入研究了GADMM的线性化版本,其中它的一个子问题通过线性化策略进行近似。这个线性化版本对于来自不同领域的许多应用特别有效。从理论上讲,我们证明了在遍历和非遍历意义上,以迭代复杂度(表示迭代计数器)衡量的GADMM线性化版本的最坏情况𝒪(1/)收敛速率。在数值上,我们通过统计学习中的一些相当新颖且核心的应用展示了GADMM线性化版本的效率。还开发了用于这些应用的Matlab代码包。

相似文献

1
Generalized Alternating Direction Method of Multipliers: New Theoretical Insights and Applications.
Math Program Comput. 2015 Jun;7(2):149-187. doi: 10.1007/s12532-015-0078-2. Epub 2015 Feb 6.
3
Group-Based Alternating Direction Method of Multipliers for Distributed Linear Classification.
IEEE Trans Cybern. 2017 Nov;47(11):3568-3582. doi: 10.1109/TCYB.2016.2570808. Epub 2016 Jun 1.
4
The symmetric ADMM with indefinite proximal regularization and its application.
J Inequal Appl. 2017;2017(1):172. doi: 10.1186/s13660-017-1447-3. Epub 2017 Jul 21.
5
Convergence analysis on a modified generalized alternating direction method of multipliers.
J Inequal Appl. 2018;2018(1):129. doi: 10.1186/s13660-018-1721-z. Epub 2018 Jun 8.
6
The convergence rate of the proximal alternating direction method of multipliers with indefinite proximal regularization.
J Inequal Appl. 2017;2017(1):19. doi: 10.1186/s13660-017-1295-1. Epub 2017 Jan 14.
7
Accelerated Variance Reduction Stochastic ADMM for Large-Scale Machine Learning.
IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4242-4255. doi: 10.1109/TPAMI.2020.3000512. Epub 2021 Nov 3.
8
Doubly elastic net regularized online portfolio optimization with transaction costs.
Sci Rep. 2023 Nov 2;13(1):18937. doi: 10.1038/s41598-023-46059-2.
9
Learning a Coupled Linearized Method in Online Setting.
IEEE Trans Neural Netw Learn Syst. 2017 Feb;28(2):438-450. doi: 10.1109/TNNLS.2016.2514413. Epub 2016 Jan 22.
10
Dual Alternating Direction Method of Multipliers for Inverse Imaging.
IEEE Trans Image Process. 2022;31:3295-3308. doi: 10.1109/TIP.2022.3167915. Epub 2022 Apr 26.

引用本文的文献

1
Projection Test for Mean Vector in High Dimensions.
J Am Stat Assoc. 2024;119(545):744-756. doi: 10.1080/01621459.2022.2142592. Epub 2022 Dec 12.
2
Distributed and scalable optimization for robust proton treatment planning.
Med Phys. 2023 Jan;50(1):633-642. doi: 10.1002/mp.15897. Epub 2022 Sep 4.
3
Convergence analysis on a modified generalized alternating direction method of multipliers.
J Inequal Appl. 2018;2018(1):129. doi: 10.1186/s13660-018-1721-z. Epub 2018 Jun 8.
4
5
The symmetric ADMM with indefinite proximal regularization and its application.
J Inequal Appl. 2017;2017(1):172. doi: 10.1186/s13660-017-1447-3. Epub 2017 Jul 21.
7
Learning Latent Variable Gaussian Graphical Model for Biomolecular Network with Low Sample Complexity.
Comput Math Methods Med. 2016;2016:2078214. doi: 10.1155/2016/2078214. Epub 2016 Oct 23.
8
Relaxed Linearized Algorithms for Faster X-Ray CT Image Reconstruction.
IEEE Trans Med Imaging. 2016 Apr;35(4):1090-8. doi: 10.1109/TMI.2015.2508780. Epub 2015 Dec 17.

本文引用的文献

1
Vast Portfolio Selection with Gross-exposure Constraints().
J Am Stat Assoc. 2012;107(498):592-606. doi: 10.1080/01621459.2012.682825. Epub 2012 May 14.
2
A ROAD to Classification in High Dimensional Space.
J R Stat Soc Series B Stat Methodol. 2012 Sep;74(4):745-771. doi: 10.1111/j.1467-9868.2012.01029.x. Epub 2012 Apr 12.
3
Penalized classification using Fisher's linear discriminant.
J R Stat Soc Series B Stat Methodol. 2011 Nov;73(5):753-772. doi: 10.1111/j.1467-9868.2011.00783.x.
4
Frozen robust multiarray analysis (fRMA).
Biostatistics. 2010 Apr;11(2):242-53. doi: 10.1093/biostatistics/kxp059. Epub 2010 Jan 22.
5
High Dimensional Classification Using Features Annealed Independence Rules.
Ann Stat. 2008;36(6):2605-2637. doi: 10.1214/07-AOS504.
6
Hybrid huberized support vector machines for microarray classification and gene selection.
Bioinformatics. 2008 Feb 1;24(3):412-9. doi: 10.1093/bioinformatics/btm579. Epub 2008 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验