Suppr超能文献

Bax/Bak表达细胞与双敲除细胞的无标记分类

Label-Free Classification of Bax/Bak Expressing vs. Double-Knockout Cells.

作者信息

Naser Mohammad, Graham Michelle T, Pierre Kamau, Boustany Nada N

机构信息

Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ, 08854, USA.

Department of Electrical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

出版信息

Ann Biomed Eng. 2016 Nov;44(11):3398-3407. doi: 10.1007/s10439-016-1649-8. Epub 2016 Jun 2.

Abstract

We combine optical scatter imaging with principal component analysis (PCA) to classify apoptosis-competent Bax/Bak-expressing, and apoptosis resistant Bax/Bak-null immortalized baby mouse kidney cells. We apply PCA to 100 stacks each containing 236 dark-field cell images filtered with an optically implemented Gabor filter with period between 0.3 and 2.9 μm. Each stack yields an "eigencell" image corresponding to the first principal component obtained at one of the 100 Gabor filter periods used. At each filter period, each cell image is multiplied by (projected onto) the eigencell image. A Feature Matrix consisting of 236 × 100 scalar values is thus constructed with significantly reduced dimension compared to the initial dataset. Utilizing this Feature Matrix, we implement a supervised linear discriminant analysis and classify successfully the Bax/Bak-expressing and Bax/Bak-null cells with 94.7% accuracy and an area under the curve (AUC) of 0.993. Applying a feature selection algorithm further reveals that the Gabor filter period ranges most significant for the classification correspond to both large (likely nuclear) features as well as small sized features (likely organelles present in the cytoplasm). Our results suggest that cells with a genetic defect in their apoptosis pathway can be differentiated from their normal counterparts by label-free multi-parametric optical scatter data.

摘要

我们将光学散射成像与主成分分析(PCA)相结合,以对具有凋亡能力的Bax/Bak表达细胞和抗凋亡的Bax/Bak缺失永生化幼鼠肾细胞进行分类。我们将PCA应用于100组数据,每组包含236张暗场细胞图像,这些图像用光学实现的Gabor滤波器进行滤波,滤波器周期在0.3至2.9μm之间。每组数据都会生成一个“特征细胞”图像,该图像对应于在100个使用的Gabor滤波器周期之一处获得的第一主成分。在每个滤波器周期,每个细胞图像都乘以(投影到)特征细胞图像上。由此构建了一个由236×100个标量值组成的特征矩阵,与初始数据集相比,其维度显著降低。利用这个特征矩阵,我们实施了监督线性判别分析,并成功地对Bax/Bak表达细胞和Bax/Bak缺失细胞进行了分类,准确率为94.7%,曲线下面积(AUC)为0.993。应用特征选择算法进一步揭示,对于分类最显著的Gabor滤波器周期范围既对应于大的(可能是核的)特征,也对应于小尺寸的特征(可能是细胞质中存在的细胞器)。我们的结果表明,凋亡途径存在遗传缺陷的细胞可以通过无标记的多参数光学散射数据与正常细胞区分开来。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验