Trejo Laura, Alvarado-Cárdenas Leonardo O, Scheinvar Enrique, Eguiarte Luis E
Laboratorio Regional de Biodiversidad y Cultivo de Tejidos Vegetales, Instituto de Biología, Universidad Nacional Autónoma de México, sede Tlaxcala, Ex Fábrica San Manuel, Santa Cruz Tlaxcala, Tlaxcala 90640 México
Laboratorio de Plantas Vasculares, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399 04510 Mexico, D.F. Mexico.
Am J Bot. 2016 Jun;103(6):1020-9. doi: 10.3732/ajb.1500446. Epub 2016 Jun 1.
Is there an association between bioclimatic variables and genetic variation within species? This question can be approached by a detailed analysis of population genetics parameters along environmental gradients in recently originated species (so genetic drift does not further obscure the patterns). The genus Agave, with more than 200 recent species encompassing a diversity of morphologies and distributional patterns, is an adequate system for such analyses. We studied Agave striata, a widely distributed species from the Chihuahuan Desert, with a distinctive iteroparous reproductive ecology and two recognized subspecies with clear morphological differences. We used population genetic analyses along with bioclimatic studies to understand the effect of environment on the genetic variation and differentiation of this species.
We analyzed six populations of the subspecies A. striata subsp. striata, with a southern distribution, and six populations of A. striata subsp. falcata, with a northern distribution, using 48 ISSR loci and a total of 541 individuals (averaging 45 individuals per population). We assessed correlations between population genetics parameters (the levels of genetic variation and differentiation) and the bioclimatic variables of each population. We modeled each subspecies distribution and used linear correlations and multifactorial analysis of variance.
Genetic variation (measured as expected heterozygosity) increased at higher latitudes. Higher levels of genetic variation in populations were associated with a higher variation in environmental temperature and lower precipitation. Stronger population differentiation was associated with wetter and more variable precipitation in the southern distribution of the species. The two subspecies have genetic differences, which coincide with their climatic differences and potential distributions.
Differences in genetic variation among populations and the genetic differentiation between A. striata subsp. striata and A. striata subsp. falcata is correlated with differences in environmental climatic variables along their distribution. We found two distinct gene pools that suggest active differentiation and perhaps incipient speciation. The detected association between genetic variation and environment variables indicates that climatic variables are playing an important role in the differentiation of A. striata.
生物气候变量与物种内的遗传变异之间是否存在关联?这个问题可以通过对新形成物种沿环境梯度的群体遗传学参数进行详细分析来解决(这样遗传漂变就不会进一步掩盖这些模式)。龙舌兰属有200多个新物种,涵盖了多种形态和分布模式,是进行此类分析的合适系统。我们研究了条纹龙舌兰,它是一种广泛分布于奇瓦瓦沙漠的物种,具有独特的反复生殖生态,还有两个形态差异明显的公认亚种。我们通过群体遗传学分析和生物气候研究来了解环境对该物种遗传变异和分化的影响。
我们分析了条纹龙舌兰亚种条纹龙舌兰的六个种群(分布在南部)和条纹龙舌兰亚种镰状龙舌兰的六个种群(分布在北部),使用48个ISSR位点,共541个个体(每个种群平均45个个体)。我们评估了群体遗传学参数(遗传变异和分化水平)与每个种群生物气候变量之间的相关性。我们对每个亚种的分布进行建模,并使用线性相关性和多因素方差分析。
遗传变异(以期望杂合度衡量)在较高纬度地区增加。种群中较高水平的遗传变异与环境温度的较高变化和较低降水量相关。在该物种的南半部分布中,更强的种群分化与更湿润且变化更大的降水量相关。这两个亚种存在遗传差异,这与它们的气候差异和潜在分布相吻合。
种群间遗传变异的差异以及条纹龙舌兰亚种条纹龙舌兰和条纹龙舌兰亚种镰状龙舌兰之间的遗传分化与它们分布范围内环境气候变量的差异相关。我们发现了两个不同的基因库,这表明存在活跃的分化,甚至可能是初始物种形成。检测到的遗传变异与环境变量之间的关联表明,气候变量在条纹龙舌兰的分化中起着重要作用。