Suppr超能文献

大鼠视网膜中糖尿病诱导酸中毒的发展

Development of diabetes-induced acidosis in the rat retina.

作者信息

Dmitriev Andrey V, Henderson Desmond, Linsenmeier Robert A

机构信息

Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States.

Department of Biomedical Engineering, 2145 Sheridan Road, Northwestern University, Evanston, IL 60208-3107, United States; Department of Neurobiology, 2205 Tech Drive, Northwestern University, Evanston, IL 60208, United States; Department of Ophthalmology, Northwestern University, 645 North Michigan Avenue, Suite 440, Chicago, IL 60611, United States.

出版信息

Exp Eye Res. 2016 Aug;149:16-25. doi: 10.1016/j.exer.2016.05.028. Epub 2016 Jun 2.

Abstract

We hypothesized that the retina of diabetic animals would be unusually acidic due to increased glycolytic metabolism. Acidosis in tumors and isolated retina has been shown to lead to increased VEGF. To test the hypothesis we have measured the transretinal distribution of extracellular H(+) concentration (H(+)-profiles) in retinae of control and diabetic dark-adapted intact Long-Evans rats with ion-selective electrodes. Diabetes was induced by intraperitoneal injection of streptozotocin. Intact rat retinae are normally more acidic than blood with a peak of [H(+)]o in the outer nuclear layer (ONL) that averages 30 nM higher than H(+) in the choroid. Profiles in diabetic animals were similar in shape, but diabetic retinae began to be considerably more acidic after 5 weeks of diabetes. In retinae of 1-3 month diabetics the difference between the ONL and choroid was almost twice as great as in controls. At later times, up to 6 months, some diabetics still demonstrated abnormally high levels of [H(+)]o, but others were even less acidic than controls, so that the average level of acidosis was not different. Greater variability in H(+)-profiles (both between animals and between profiles recorded in one animal) distinguished the diabetic retinae from controls. Within animals, this variability was not random, but exhibited regions of higher and lower H(+). We conclude that retinal acidosis begins to develop at an early stage of diabetes (1-3 months) in rats. However, it does not progress, and the acidity of diabetic rat retina was diminished at later stages (3-6 months). Also the diabetes-induced acidosis has a strongly expressed local character. As result, the diabetic retinas show much wider variability in [H(+)] distribution than controls. pH influences metabolic and neural processes, and these results suggest that local acidosis could play a role in the pathogenesis of diabetic retinopathy.

摘要

我们推测,由于糖酵解代谢增加,糖尿病动物的视网膜会异常酸化。肿瘤和分离的视网膜中的酸中毒已被证明会导致血管内皮生长因子(VEGF)增加。为了验证这一推测,我们使用离子选择性电极测量了对照和糖尿病暗适应完整Long-Evans大鼠视网膜中细胞外H⁺浓度的跨视网膜分布(H⁺分布图)。通过腹腔注射链脲佐菌素诱导糖尿病。完整大鼠的视网膜通常比血液酸性更强,在外核层(ONL)中[H⁺]o峰值平均比脉络膜中的H⁺高30 nM。糖尿病动物的分布图形状相似,但糖尿病视网膜在糖尿病5周后开始明显更酸。在1 - 3个月糖尿病大鼠的视网膜中,ONL和脉络膜之间的差异几乎是对照组的两倍。在后期,长达6个月时,一些糖尿病大鼠仍表现出异常高的[H⁺]o水平,但其他大鼠甚至比对照组酸性更低,因此酸中毒的平均水平没有差异。糖尿病视网膜与对照组的区别在于H⁺分布图有更大的变异性(在动物之间以及在一只动物中记录的分布图之间)。在动物体内,这种变异性不是随机的,而是表现出H⁺较高和较低的区域。我们得出结论,大鼠糖尿病早期(1 - 3个月)视网膜酸中毒开始发展。然而,它并没有进展,糖尿病大鼠视网膜的酸度在后期(3 - 6个月)降低。此外,糖尿病诱导的酸中毒具有强烈的局部特征。因此,糖尿病视网膜在[H⁺]分布上的变异性比对照组大得多。pH影响代谢和神经过程,这些结果表明局部酸中毒可能在糖尿病视网膜病变的发病机制中起作用。

相似文献

1
Development of diabetes-induced acidosis in the rat retina.
Exp Eye Res. 2016 Aug;149:16-25. doi: 10.1016/j.exer.2016.05.028. Epub 2016 Jun 2.
2
Diabetes Alters pH Control in Rat Retina.
Invest Ophthalmol Vis Sci. 2019 Feb 1;60(2):723-730. doi: 10.1167/iovs.18-26073.
3
Light-induced pH changes in the intact retinae of normal and early diabetic rats.
Exp Eye Res. 2016 Apr;145:148-157. doi: 10.1016/j.exer.2015.11.015. Epub 2015 Nov 27.
4
Intraretinal pH in diabetic cats.
Curr Eye Res. 2005 Mar;30(3):229-40. doi: 10.1080/02713680590934067.
6
Retinal localization of the glutamate receptor GluR2 and GluR2-regulating proteins in diabetic rats.
Exp Eye Res. 2010 Feb;90(2):244-53. doi: 10.1016/j.exer.2009.10.012. Epub 2009 Oct 28.
8
9
Intravitreal injection of exendin-4 analogue protects retinal cells in early diabetic rats.
Invest Ophthalmol Vis Sci. 2011 Jan 5;52(1):278-85. doi: 10.1167/iovs.09-4727.
10
Retinal pH and Acid Regulation During Metabolic Acidosis.
Curr Eye Res. 2018 Jul;43(7):902-912. doi: 10.1080/02713683.2018.1458882. Epub 2018 Apr 11.

引用本文的文献

1
pH in the vertebrate retina and its naturally occurring and pathological changes.
Prog Retin Eye Res. 2025 Jan;104:101321. doi: 10.1016/j.preteyeres.2024.101321. Epub 2024 Nov 26.
3
Diabetic mice have retinal and choroidal blood flow deficits and electroretinogram deficits with impaired responses to hypercapnia.
PLoS One. 2021 Dec 9;16(12):e0259505. doi: 10.1371/journal.pone.0259505. eCollection 2021.
5
Intravenous ketamine for long term anesthesia in rats.
Heliyon. 2020 Dec 14;6(12):e05686. doi: 10.1016/j.heliyon.2020.e05686. eCollection 2020 Dec.
6
Diabetes Alters pH Control in Rat Retina.
Invest Ophthalmol Vis Sci. 2019 Feb 1;60(2):723-730. doi: 10.1167/iovs.18-26073.
7
Retinal pH and Acid Regulation During Metabolic Acidosis.
Curr Eye Res. 2018 Jul;43(7):902-912. doi: 10.1080/02713683.2018.1458882. Epub 2018 Apr 11.
8
Retinal oxygen: from animals to humans.
Prog Retin Eye Res. 2017 May;58:115-151. doi: 10.1016/j.preteyeres.2017.01.003. Epub 2017 Jan 18.
9
Light-induced pH changes in the intact retinae of normal and early diabetic rats.
Exp Eye Res. 2016 Apr;145:148-157. doi: 10.1016/j.exer.2015.11.015. Epub 2015 Nov 27.

本文引用的文献

1
Light-induced pH changes in the intact retinae of normal and early diabetic rats.
Exp Eye Res. 2016 Apr;145:148-157. doi: 10.1016/j.exer.2015.11.015. Epub 2015 Nov 27.
2
The progress in understanding and treatment of diabetic retinopathy.
Prog Retin Eye Res. 2016 Mar;51:156-86. doi: 10.1016/j.preteyeres.2015.08.001. Epub 2015 Aug 18.
3
Photoreceptors in diabetic retinopathy.
J Diabetes Investig. 2015 Jul;6(4):371-80. doi: 10.1111/jdi.12312. Epub 2015 Jan 7.
4
Association of Diabetic Macular Nonperfusion With Outer Retinal Disruption on Optical Coherence Tomography.
JAMA Ophthalmol. 2015 Sep;133(9):1036-44. doi: 10.1001/jamaophthalmol.2015.2183.
5
Early retinal pigment epithelium dysfunction is concomitant with hyperglycemia in mouse models of type 1 and type 2 diabetes.
J Neurophysiol. 2015 Feb 15;113(4):1085-99. doi: 10.1152/jn.00761.2014. Epub 2014 Nov 26.
6
Increased intraretinal PO2 in short-term diabetic rats.
Diabetes. 2014 Dec;63(12):4338-42. doi: 10.2337/db14-0101. Epub 2014 Jul 15.
7
Animal models of diabetic retinopathy: summary and comparison.
J Diabetes Res. 2013;2013:106594. doi: 10.1155/2013/106594. Epub 2013 Oct 27.
8
Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16586-91. doi: 10.1073/pnas.1314575110. Epub 2013 Sep 25.
10
Oxygen consumption and distribution in the Long-Evans rat retina.
Exp Eye Res. 2012 Sep;102:50-8. doi: 10.1016/j.exer.2012.07.004. Epub 2012 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验