Suppr超能文献

在活斑马鱼幼体中使用荧光脂质:从成像整个动物生理到亚细胞脂质运输。

Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking.

作者信息

Anderson J L, Carten J D, Farber S A

机构信息

Carnegie Institution for Science, Baltimore, MD, United States.

出版信息

Methods Cell Biol. 2016;133:165-78. doi: 10.1016/bs.mcb.2016.04.011. Epub 2016 May 9.

Abstract

Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review commercially available fluorescent lipids that can be deployed in live zebrafish to better understand lipid signaling and metabolism. In this chapter, we present criteria one should consider when selecting specific fluorescent lipids for the study of digestive physiology or lipid metabolism in larval zebrafish.

摘要

脂质在细胞中发挥着重要功能,作为信号分子、膜成分和能量来源。脂质代谢缺陷与许多全球性人类疾病有关,包括糖尿病、肥胖症和高胆固醇血症。肠道细胞如何吸收和处理脂肪酸及胆固醇的许多方面仍不清楚,这对开发疾病预防和治疗方法构成了障碍。大量研究表明,斑马鱼是研究脊椎动物脂质代谢的优秀模型。在本章中,我们综述了可用于活斑马鱼的市售荧光脂质,以更好地了解脂质信号传导和代谢。在本章中,我们提出了在选择特定荧光脂质用于研究斑马鱼幼体消化生理学或脂质代谢时应考虑的标准。

相似文献

1
Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking.
Methods Cell Biol. 2016;133:165-78. doi: 10.1016/bs.mcb.2016.04.011. Epub 2016 May 9.
2
Zebrafish lipid metabolism: from mediating early patterning to the metabolism of dietary fat and cholesterol.
Methods Cell Biol. 2011;101:111-41. doi: 10.1016/B978-0-12-387036-0.00005-0.
5
Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish.
Dev Biol. 2011 Dec 15;360(2):276-85. doi: 10.1016/j.ydbio.2011.09.010. Epub 2011 Sep 21.
6
Lipid Uptake, Metabolism, and Transport in the Larval Zebrafish.
Front Endocrinol (Lausanne). 2017 Nov 20;8:319. doi: 10.3389/fendo.2017.00319. eCollection 2017.
7
An HPLC-CAD/fluorescence lipidomics platform using fluorescent fatty acids as metabolic tracers.
J Lipid Res. 2017 May;58(5):1008-1020. doi: 10.1194/jlr.D072918. Epub 2017 Mar 9.
8
Zebrafish: gaining popularity in lipid research.
Biochem J. 2010 Jul 15;429(2):235-42. doi: 10.1042/BJ20100293.
9
Whole plant based treatment of hypercholesterolemia with Crataegus laevigata in a zebrafish model.
BMC Complement Altern Med. 2012 Jul 23;12:105. doi: 10.1186/1472-6882-12-105.
10
An in vivo reporter for tracking lipid droplet dynamics in transparent zebrafish.
Elife. 2021 Jun 11;10:e64744. doi: 10.7554/eLife.64744.

引用本文的文献

1
Zebrafish as a model for human epithelial pathology.
Lab Anim Res. 2025 Feb 3;41(1):6. doi: 10.1186/s42826-025-00238-6.
2
Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1053-1064. doi: 10.1161/ATVBAHA.123.318287. Epub 2024 Mar 14.
4
Protocol to evaluate hyperlipidemia in zebrafish larvae.
STAR Protoc. 2022 Nov 7;3(4):101819. doi: 10.1016/j.xpro.2022.101819. eCollection 2022 Dec 16.
5
Luminescent Metal Complexes as Emerging Tools for Lipid Imaging.
Top Curr Chem (Cham). 2022 Aug 17;380(6):46. doi: 10.1007/s41061-022-00400-x.
6
A Planar Culture Model of Human Absorptive Enterocytes Reveals Metformin Increases Fatty Acid Oxidation and Export.
Cell Mol Gastroenterol Hepatol. 2022;14(2):409-434. doi: 10.1016/j.jcmgh.2022.04.009. Epub 2022 Apr 28.
7
A Great Catch for Investigating Inborn Errors of Metabolism-Insights Obtained from Zebrafish.
Biomolecules. 2020 Sep 22;10(9):1352. doi: 10.3390/biom10091352.
8
Early cell-autonomous accumulation of neutral lipids during infection promotes mycobacterial growth.
PLoS One. 2020 May 14;15(5):e0232251. doi: 10.1371/journal.pone.0232251. eCollection 2020.
9
Quantitative Mapping of Triacylglycerol Chain Length and Saturation Using Broadband CARS Microscopy.
Biophys J. 2019 Jun 18;116(12):2346-2355. doi: 10.1016/j.bpj.2019.04.036. Epub 2019 May 11.
10
Nano-Sampling and Reporter Tools to Study Metabolic Regulation in Zebrafish.
Front Cell Dev Biol. 2019 Feb 19;7:15. doi: 10.3389/fcell.2019.00015. eCollection 2019.

本文引用的文献

1
The GARP complex is required for cellular sphingolipid homeostasis.
Elife. 2015 Sep 10;4:e08712. doi: 10.7554/eLife.08712.
2
Targeted Mutagenesis in Zebrafish Using CRISPR RNA-Guided Nucleases.
Methods Mol Biol. 2015;1311:317-34. doi: 10.1007/978-1-4939-2687-9_21.
3
Rapid reverse genetic screening using CRISPR in zebrafish.
Nat Methods. 2015 Jun;12(6):535-40. doi: 10.1038/nmeth.3360. Epub 2015 Apr 13.
4
Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors?
Circ Res. 2015 Feb 27;116(5):909-22. doi: 10.1161/CIRCRESAHA.116.302888.
6
Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism.
Dis Model Mech. 2014 Jul;7(7):915-27. doi: 10.1242/dmm.015800. Epub 2014 May 8.
7
An interview with Randy Schekman and Thomas Südhof.
Trends Cell Biol. 2014 Jan;24(1):6-8. doi: 10.1016/j.tcb.2013.11.006.
8
Overview of epidemiology and contribution of obesity to cardiovascular disease.
Prog Cardiovasc Dis. 2014 Jan-Feb;56(4):369-81. doi: 10.1016/j.pcad.2013.10.016. Epub 2013 Oct 24.
9
Long-chain Acyl-CoA synthetase 4A regulates Smad activity and dorsoventral patterning in the zebrafish embryo.
Dev Cell. 2013 Dec 23;27(6):635-47. doi: 10.1016/j.devcel.2013.11.011. Epub 2013 Dec 12.
10
Imaging vertebrate digestive function and lipid metabolism .
Drug Discov Today Dis Models. 2013;10(1). doi: 10.1016/j.ddmod.2012.02.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验