Radman Miroslav
Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia; Inserm Unit 1001, Université Paris-Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, 75014 Paris, France.
DNA Repair (Amst). 2016 Aug;44:186-192. doi: 10.1016/j.dnarep.2016.05.025. Epub 2016 May 20.
This paper promotes a concept that protein damage determines radiation resistance and underlies aging and age-related diseases. The first bottleneck in cell recovery from radiation damage is functional (proteome) rather than informational (DNA), since prokaryotic and eukaryotic cell death correlates with incurred protein, but not DNA, damage. Proteome protection against oxidative damage determines survival after ionizing or UV irradiation, since sufficient residual proteome activity is required to turn on the DNA damage response activating DNA repair and protein renewal processes. Extreme radiation and desiccation resistance of rare bacterial and animal species is accounted for by exceptional constitutive proteome protection against oxidative damage. After excessive radiation their well-protected proteome faithfully reconstitutes a transcription-competent genome from hundreds of DNA fragments. The observation that oxidative damage targeted selectively to cellular proteins results in aging-like phenotypes suggests that aging and age-related diseases could be phenotypic consequences of proteome damage patterns progressing with age.
本文提出了一个概念,即蛋白质损伤决定辐射抗性,并构成衰老及与年龄相关疾病的基础。细胞从辐射损伤中恢复的首要瓶颈在于功能(蛋白质组)而非信息(DNA),因为原核和真核细胞死亡与所遭受的蛋白质损伤相关,而非DNA损伤。蛋白质组对氧化损伤的保护决定了电离或紫外线照射后的存活情况,因为开启激活DNA修复和蛋白质更新过程的DNA损伤反应需要足够的残余蛋白质组活性。罕见细菌和动物物种对极端辐射和干燥的抗性是由针对氧化损伤的特殊组成型蛋白质组保护来解释的。在遭受过量辐射后,它们受到良好保护的蛋白质组能从数百个DNA片段忠实地重构出具有转录能力的基因组。选择性针对细胞蛋白质的氧化损伤会导致衰老样表型这一观察结果表明,衰老及与年龄相关疾病可能是随着年龄增长蛋白质组损伤模式所产生的表型后果。