Suppr超能文献

用于协同生物转化的二氧化硅生态系统。

Silica ecosystem for synergistic biotransformation.

作者信息

Mutlu Baris R, Sakkos Jonathan K, Yeom Sujin, Wackett Lawrence P, Aksan Alptekin

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Sci Rep. 2016 Jun 6;6:27404. doi: 10.1038/srep27404.

Abstract

Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.

摘要

协同作用的细菌物种能够比任何单一物种进行更多样化和复杂的化学物质转化,但由于维持混合培养物存在技术困难,这种方法很少用于商业用途。大规模混合培养的典型问题是一种细菌不受控制地生长,这会导致种群比例不理想,以及对细菌空间分布缺乏控制,这会导致底物运输效率低下。为了解决这些问题,我们通过在硅胶基质中共包封设计并构建了一个合成生态系统,从而能够精确控制微生物种群及其微环境。作为一个案例研究,我们包封了两种差异极大的微生物:假单胞菌属NCIB 9816和聚球藻属细长聚球藻PCC 7942。NCIB 9816能够好氧生物转化100多种芳香烃,这一特性对于合成高价值商品化学品或环境修复很有用。在我们的系统中,NCIB 9816用于将萘(一种模型底物)生物转化为二氧化碳,而蓝细菌PCC 7942则用于通过光合作用为生物转化反应提供必要的氧气。构建了一个数学模型来确定使氧气产量最大化的关键细胞密度参数,然后用该模型来最大化系统的生物转化速率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d287/4893658/218465366546/srep27404-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验