Suppr超能文献

工程化的 Synechococcus elongatus 和 Pseudomonas putida 共培养物中 2,4-二硝基甲苯的生物转化。

Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida.

机构信息

DOE-MSU Plant Research Laboratories, Michigan State University, East Lansing, MI, USA.

Genetics Program, Michigan State University, East Lansing, MI, USA.

出版信息

Microb Biotechnol. 2020 Jul;13(4):997-1011. doi: 10.1111/1751-7915.13544. Epub 2020 Feb 16.

Abstract

In contrast to the current paradigm of using microbial mono-cultures in most biotechnological applications, increasing efforts are being directed towards engineering mixed-species consortia to perform functions that are difficult to programme into individual strains. In this work, we developed a synthetic microbial consortium composed of two genetically engineered microbes, a cyanobacterium (Synechococcus elongatus PCC 7942) and a heterotrophic bacterium (Pseudomonas putida EM173). These microbial species specialize in the co-culture: cyanobacteria fix CO through photosynthetic metabolism and secrete sufficient carbohydrates to support the growth and active metabolism of P. putida, which has been engineered to consume sucrose and to degrade the environmental pollutant 2,4-dinitrotoluene (2,4-DNT). By encapsulating S. elongatus within a barium-alginate hydrogel, cyanobacterial cells were protected from the toxic effects of 2,4-DNT, enhancing the performance of the co-culture. The synthetic consortium was able to convert 2,4-DNT with light and CO as key inputs, and its catalytic performance was stable over time. Furthermore, cycling this synthetic consortium through low nitrogen medium promoted the sucrose-dependent accumulation of polyhydroxyalkanoate, an added-value biopolymer, in the engineered P. putida strain. Altogether, the synthetic consortium displayed the capacity to remediate the industrial pollutant 2,4-DNT while simultaneously synthesizing biopolymers using light and CO as the primary inputs.

摘要

与目前在大多数生物技术应用中使用微生物单一培养物的范式相反,越来越多的努力正致力于工程化混合物种共生体,以执行难以编程到单个菌株中的功能。在这项工作中,我们开发了一种由两种基因工程微生物组成的合成微生物共生体,一种是蓝藻(Synechococcus elongatus PCC 7942)和一种异养细菌(Pseudomonas putida EM173)。这些微生物物种专门用于共培养:蓝藻通过光合作用代谢固定 CO 并分泌足够的碳水化合物来支持 P. putida 的生长和活跃代谢,P. putida 已被工程化以消耗蔗糖并降解环境污染物 2,4-二硝基甲苯(2,4-DNT)。通过将 S. elongatus 封装在钡-藻酸盐水凝胶中,蓝藻细胞免受 2,4-DNT 的毒性影响,从而提高了共培养的性能。合成共生体能够用光和 CO 作为关键输入转化 2,4-DNT,其催化性能随着时间的推移保持稳定。此外,通过低氮培养基循环使用这种合成共生体促进了工程化 P. putida 菌株中依赖蔗糖的聚羟基烷酸酯(一种附加值生物聚合物)的积累。总之,合成共生体显示出了修复工业污染物 2,4-DNT 的能力,同时使用光和 CO 作为主要输入合成生物聚合物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da25/7264894/d86bc4642322/MBT2-13-997-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验