Suppr超能文献

在田间亏缺灌溉条件下丛枝菌根真菌对番茄产量、养分吸收、水分关系和土壤碳动态的影响。

Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions.

机构信息

Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA.

Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, Reno, NV 89557, USA.

出版信息

Sci Total Environ. 2016 Oct 1;566-567:1223-1234. doi: 10.1016/j.scitotenv.2016.05.178. Epub 2016 Jun 5.

Abstract

Plant strategies to cope with future droughts may be enhanced by associations between roots and soil microorganisms, including arbuscular mycorrhizal (AM) fungi. But how AM fungi affect crop growth and yield, together with plant physiology and soil carbon (C) dynamics, under water stress in actual field conditions is not well understood. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant nonmycorrhizal tomato genotype rmc were grown in an organic farm with a deficit irrigation regime and control regime that replaced evapotranspiration. AM increased marketable tomato yields by ~25% in both irrigation regimes but did not affect shoot biomass. In both irrigation regimes, MYC+ plants had higher plant nitrogen (N) and phosphorus (P) concentrations (e.g. 5 and 24% higher N and P concentrations in leaves at fruit set, respectively), 8% higher stomatal conductance (gs), 7% higher photosynthetic rates (Pn), and greater fruit set. Stem water potential and leaf relative water content were similar in both genotypes within each irrigation regime. Three-fold higher rates of root sap exudation in detopped MYC+ plants suggest greater capacity for water uptake through osmotic driven flow, especially in the deficit irrigation regime in which root sap exudation in rmc was nearly absent. Soil with MYC+ plants also had slightly higher soil extractable organic C and microbial biomass C at anthesis but no changes in soil CO2 emissions, although the latter were 23% lower under deficit irrigation. This study provides novel, field-based evidence for how indigenous AM fungi increase crop yield and crop water use efficiency during a season-long deficit irrigation and thus play an important role in coping with increasingly limited water availability in the future.

摘要

植物应对未来干旱的策略可能会因根系与土壤微生物(包括丛枝菌根真菌)之间的关联而得到增强。但是,在实际田间条件下,水分胁迫下丛枝菌根真菌如何影响作物生长和产量,以及植物生理学和土壤碳(C)动态,目前还不是很清楚。在一个采用亏缺灌溉制度和替代蒸散量的对照制度的有机农场中,对具有特征性的丛枝菌根番茄(Solanum lycopersicum L.)基因型 76R(称为 MYC+)和非丛枝菌根番茄基因型 rmc 进行了栽培。在两种灌溉制度下,丛枝菌根都使可销售的番茄产量增加了约 25%,但对地上部生物量没有影响。在两种灌溉制度下,MYC+植物的植物氮(N)和磷(P)浓度更高(例如,在果实设定时叶片中的 N 和 P 浓度分别高 5%和 24%),气孔导度(gs)高 8%,光合速率(Pn)高 7%,结实率更高。在每个灌溉制度中,两种基因型的茎水势和叶片相对含水量都相似。去顶 MYC+植物的根渗出液分泌率高出三倍,这表明其通过渗透驱动流吸收水分的能力更强,尤其是在亏缺灌溉制度下,rmc 的根渗出液几乎不存在。与 rmc 相比,具有 MYC+植物的土壤在开花期也具有略高的土壤可提取有机 C 和微生物生物量 C,但土壤 CO2 排放没有变化,尽管在亏缺灌溉下后者降低了 23%。本研究为丛枝菌根真菌在整个亏缺灌溉季节如何提高作物产量和作物水分利用效率提供了新的、基于田间的证据,因此在未来应对日益有限的水资源方面发挥着重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验