Mohammed-Awel Jemal, Numfor Eric
a Department of Mathematics and Computer Science , Valdosta State University , Valdosta , GA , USA.
b Department of Mathematics , Augusta University , Augusta , GA , USA.
J Biol Dyn. 2017 Mar;11(sup1):160-191. doi: 10.1080/17513758.2016.1192228. Epub 2016 Jun 7.
We propose and study a mathematical model for malaria-HIV co-infection transmission and control, in which malaria treatment and insecticide-treated nets are incorporated. The existence of a backward bifurcation is established analytically, and the occurrence of such backward bifurcation is influenced by disease-induced mortality, insecticide-treated bed-net coverage and malaria treatment parameters. To further assess the impact of malaria treatment and insecticide-treated bed-net coverage, we formulate an optimal control problem with malaria treatment and insecticide-treated nets as control functions. Using reasonable parameter values, numerical simulations of the optimal control suggest the possibility of eliminating malaria and reducing HIV prevalence significantly, within a short time horizon.
我们提出并研究了一个用于疟疾 - 艾滋病病毒合并感染传播与控制的数学模型,其中纳入了疟疾治疗和经杀虫剂处理的蚊帐。通过分析确定了反向分岔的存在,并且这种反向分岔的出现受疾病导致的死亡率、经杀虫剂处理的蚊帐覆盖率和疟疾治疗参数的影响。为了进一步评估疟疾治疗和经杀虫剂处理的蚊帐覆盖率的影响,我们将疟疾治疗和经杀虫剂处理的蚊帐作为控制函数,制定了一个最优控制问题。使用合理的参数值,最优控制的数值模拟表明在短时间内消除疟疾并显著降低艾滋病病毒流行率的可能性。