Suppr超能文献

基于 3D 水平集和 K-Means+的 MicroCT 图像中单牙的分割和分类方案。

A segmentation and classification scheme for single tooth in MicroCT images based on 3D level set and k-means+.

机构信息

Department of Computer Science, Xiamen University, Xiamen 361005, China.

Department of Computer Science, Xiamen University, Xiamen 361005, China.

出版信息

Comput Med Imaging Graph. 2017 Apr;57:19-28. doi: 10.1016/j.compmedimag.2016.05.005. Epub 2016 May 31.

Abstract

Accurate classification of different anatomical structures of teeth from medical images provides crucial information for the stress analysis in dentistry. Usually, the anatomical structures of teeth are manually labeled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing 3 dimensional (3D) information, and classify the tooth by employing unsupervised learning i.e., k-means++ method. In order to evaluate the proposed method, the experiments are conducted on the sufficient and extensive datasets of mandibular molars. The experimental results show that our method can achieve higher accuracy and robustness compared to other three clustering methods.

摘要

准确地对医学图像中的牙齿不同解剖结构进行分类,为牙科中的应力分析提供了关键信息。通常,由经验丰富的临床医生手动对牙齿的解剖结构进行标记,这既耗时又费力。然而,自动分割和分类是一项具有挑战性的任务,因为医学图像中牙齿的解剖结构和周围环境非常复杂。因此,在本文中,我们提出了一个有效的框架,该框架旨在通过充分利用三维(3D)信息改进选择性二进制和高斯滤波正则化水平集(GFRLS)方法来分割牙齿,并通过无监督学习(即 k- means++ 方法)对牙齿进行分类。为了评估所提出的方法,在充分且广泛的下颌磨牙数据集上进行了实验。实验结果表明,与其他三种聚类方法相比,我们的方法可以实现更高的准确性和鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验