Suppr超能文献

基于注意力机制和 ENet 的图像分割技术。

Image Segmentation Technology Based on Attention Mechanism and ENet.

机构信息

School of Computer Science and Engineering, Hunan University of Information Technology, Changsha 410151, Hunan, China.

出版信息

Comput Intell Neurosci. 2022 Aug 4;2022:9873777. doi: 10.1155/2022/9873777. eCollection 2022.

Abstract

With the development of today's society, medical technology is becoming more and more important in people's daily diagnosis and treatment and the number of computed tomography (CT) images and MRI images is also increasing. It is difficult to meet today's needs for segmentation and recognition of medical images by manpower alone. Therefore, the use of computer technology for automatic segmentation has received extensive attention from researchers. We design a tooth CT image segmentation method combining attention mechanism and ENet. First, dilated convolution is used with the spatial information path, with a small downsampling factor to preserve the resolution of the image. Second, an attention mechanism is added to the segmentation network based on CT image features to improve the accuracy of segmentation. Then, the designed feature fusion module obtains the segmentation result of the tooth CT image. It was verified on tooth CT image dataset published by West China Hospital, and the average intersection ratio and accuracy were used as the metric. The results show that, on the dataset of West China Hospital, Mean Intersection over Union (MIOU) and accuracy are 83.47% and 95.28%, respectively, which are 3.3% and 8.09% higher than the traditional model. Compared with the multiple watershed algorithm, the Chan-Vese segmentation algorithm, and the graph cut segmentation algorithm, our algorithm increases the calculation time by 56.52%, 91.52%, and 62.96%, respectively. It can be seen that our algorithm has obvious advantages in MIOU, accuracy, and calculation time.

摘要

随着当今社会的发展,医疗技术在人们日常的诊断和治疗中变得越来越重要,计算机断层扫描(CT)图像和磁共振成像(MRI)图像的数量也在增加。仅靠人力来对医学图像进行分割和识别已经很难满足当今的需求。因此,利用计算机技术进行自动分割已经受到研究人员的广泛关注。我们设计了一种结合注意力机制和 ENet 的牙齿 CT 图像分割方法。首先,使用扩张卷积和空间信息路径,采用较小的下采样因子来保留图像的分辨率。其次,在 CT 图像特征的基础上添加注意力机制,以提高分割的准确性。然后,设计的特征融合模块获取牙齿 CT 图像的分割结果。在华西医院发布的牙齿 CT 图像数据集上进行了验证,使用平均交并比(Mean Intersection over Union,MIOU)和准确率作为指标。结果表明,在华西医院数据集上,MIOU 和准确率分别为 83.47%和 95.28%,分别比传统模型提高了 3.3%和 8.09%。与多重分水岭算法、Chan-Vese 分割算法和图割分割算法相比,我们的算法分别增加了 56.52%、91.52%和 62.96%的计算时间。可以看出,我们的算法在 MIOU、准确率和计算时间方面具有明显的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c94d/9371811/9c6bcb03ea7a/CIN2022-9873777.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验