Suppr超能文献

使用Hes1-GFP报告基因小鼠评估慢性炎症下骨细胞中Hes1启动子的活性。

Use of Hes1-GFP reporter mice to assess activity of the Hes1 promoter in bone cells under chronic inflammation.

作者信息

Zhang Hengwei, Sun Wen, Li Xing, Wang Mengmeng, Boyce Brendan F, Hilton Matthew J, Xing Lianping

机构信息

Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.

Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing 210029, People's Republic of China.

出版信息

Bone. 2016 Sep;90:80-9. doi: 10.1016/j.bone.2016.06.003. Epub 2016 Jun 4.

Abstract

Notch signaling plays a critical role in maintaining bone homeostasis partially by controlling the formation of osteoblasts from mesenchymal stem cells (MSCs). We reported that TNF activates Notch signaling in MSCs which inhibits osteoblast differentiation in TNF transgenic (TNF-Tg) mice, a mouse model of chronic inflammatory arthritis. In the current study, we used Hes1-GFP and Hes1-GFP/TNF-Tg mice to study the distribution and dynamic change of Notch active cells in normal and inflammatory bone loss and mechanisms mediating their enhanced proliferation. We found that Hes1-GFP+ cells are composed of cells expressing mesenchymal, hematopoietic and endothelial surface markers. CD45-/Hes1-GFP+ cells express high levels of mesenchymal markers and form CFU-F and CFU-ALP colonies. Expansion of CFU-F colonies is associated with a rapid increase in Hes1-GFP+ cell numbers and their GFP intensity. The GFP signal is lost when a CFU-F colony differentiates into an ALP+ osteoblast colony. TNF increases the numbers of CD45-/Hes1-GFP+ cells, which are stained negatively for osteoblast marker osteocalcin and localized adjacent to endosteal and trabecular bone surfaces. CD45-/Hes1-GFP+ cells in Hes1-GFP/TNF-Tg mice have increased BrdU incorporation and PDGFRβ levels. TNF increases the number of proliferating Hes1-GFP+ cells, which is prevented by a specific PDGFRβ inhibitor. Notch inhibition blocks TNF-mediated PDGFRβ expression and cell proliferation. Thus, TNF-induced MSC proliferation is mediated by PDGFRβ signal, which works at downstream of Notch. Hes1-GFP mice can be used to assess the activation status of Notch in bone cells.

摘要

Notch信号通路在维持骨稳态中发挥关键作用,部分原因是它能控制间充质干细胞(MSC)向成骨细胞的分化。我们报道过,在慢性炎症性关节炎小鼠模型——TNF转基因(TNF-Tg)小鼠中,肿瘤坏死因子(TNF)激活MSC中的Notch信号通路,从而抑制成骨细胞分化。在本研究中,我们使用Hes1-GFP和Hes1-GFP/TNF-Tg小鼠,来研究正常和炎症性骨质流失中Notch活性细胞的分布和动态变化,以及介导其增殖增强的机制。我们发现,Hes1-GFP+细胞由表达间充质、造血和内皮表面标志物的细胞组成。CD45-/Hes1-GFP+细胞高水平表达间充质标志物,并形成集落形成单位-成纤维细胞(CFU-F)和集落形成单位-碱性磷酸酶(CFU-ALP)集落。CFU-F集落的扩增与Hes1-GFP+细胞数量及其绿色荧光蛋白(GFP)强度的快速增加有关。当CFU-F集落分化为ALP+成骨细胞集落时,GFP信号消失。TNF增加了CD45-/Hes1-GFP+细胞的数量(这些细胞对成骨细胞标志物骨钙素呈阴性染色,并定位于骨内膜和骨小梁骨表面附近)。Hes1-GFP/TNF-Tg小鼠中的CD45-/Hes1-GFP+细胞,其5-溴脱氧尿嘧啶核苷(BrdU)掺入量和血小板衍生生长因子受体β(PDGFRβ)水平增加。TNF增加了增殖的Hes1-GFP+细胞数量,而一种特异性PDGFRβ抑制剂可阻止这种增加。Notch抑制可阻断TNF介导的PDGFRβ表达和细胞增殖。因此,TNF诱导的MSC增殖由PDGFRβ信号介导,该信号在Notch的下游起作用。Hes1-GFP小鼠可用于评估骨细胞中Notch的激活状态。

相似文献

1
2
NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-κB.
J Clin Invest. 2014 Jul;124(7):3200-14. doi: 10.1172/JCI68901. Epub 2014 Jun 2.
4
Targeting Notch-Activated M1 Macrophages Attenuates Joint Tissue Damage in a Mouse Model of Inflammatory Arthritis.
J Bone Miner Res. 2017 Jul;32(7):1469-1480. doi: 10.1002/jbmr.3117. Epub 2017 Apr 10.
8
Jagged1 expression by osteoblast-lineage cells regulates trabecular bone mass and periosteal expansion in mice.
Bone. 2016 Oct;91:64-74. doi: 10.1016/j.bone.2016.07.006. Epub 2016 Jul 12.

本文引用的文献

1
Notching on Cancer's Door: Notch Signaling in Brain Tumors.
Front Oncol. 2015 Jan 5;4:341. doi: 10.3389/fonc.2014.00341. eCollection 2014.
3
NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-κB.
J Clin Invest. 2014 Jul;124(7):3200-14. doi: 10.1172/JCI68901. Epub 2014 Jun 2.
4
Endothelial Notch activity promotes angiogenesis and osteogenesis in bone.
Nature. 2014 Mar 20;507(7492):376-380. doi: 10.1038/nature13146. Epub 2014 Mar 12.
5
Distribution and alteration of lymphatic vessels in knee joints of normal and osteoarthritic mice.
Arthritis Rheumatol. 2014 Mar;66(3):657-66. doi: 10.1002/art.38278.
6
Notch signaling in skeletal stem cells.
Calcif Tissue Int. 2014 Jan;94(1):68-77. doi: 10.1007/s00223-013-9773-z. Epub 2013 Aug 22.
7
Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer.
Cancer Cell. 2013 Mar 18;23(3):390-405. doi: 10.1016/j.ccr.2013.01.015. Epub 2013 Feb 21.
9
Akt- and Erk-mediated regulation of proliferation and differentiation during PDGFRβ-induced MSC self-renewal.
J Cell Mol Med. 2012 Nov;16(11):2789-801. doi: 10.1111/j.1582-4934.2012.01602.x.
10
The Notch pathway: a crossroad between the life and death of the endothelium.
Eur Heart J. 2013 Aug;34(32):2504-9. doi: 10.1093/eurheartj/ehs141. Epub 2012 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验