Suppr超能文献

增强对三种或更多药物之间协同和拮抗紧急相互作用的识别。

Enhanced identification of synergistic and antagonistic emergent interactions among three or more drugs.

作者信息

Tekin Elif, Beppler Casey, White Cynthia, Mao Zhiyuan, Savage Van M, Yeh Pamela J

机构信息

Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA.

出版信息

J R Soc Interface. 2016 Jun;13(119). doi: 10.1098/rsif.2016.0332.

Abstract

Interactions among drugs play a critical role in the killing efficacy of multi-drug treatments. Recent advances in theory and experiment for three-drug interactions enable the search for emergent interactions-ones not predictable from pairwise interactions. Previous work has shown it is easier to detect synergies and antagonisms among pairwise interactions when a rescaling method is applied to the interaction metric. However, no study has carefully examined whether new types of normalization might be needed for emergence. Here, we propose several rescaling methods for enhancing the classification of the higher order drug interactions based on our conceptual framework. To choose the rescaling that best separates synergism, antagonism and additivity, we conducted bacterial growth experiments in the presence of single, pairwise and triple-drug combinations among 14 antibiotics. We found one of our rescaling methods is far better at distinguishing synergistic and antagonistic emergent interactions than any of the other methods. Using our new method, we find around 50% of emergent interactions are additive, much less than previous reports of greater than 90% additivity. We conclude that higher order emergent interactions are much more common than previously believed, and we argue these findings for drugs suggest that appropriate rescaling is crucial to infer higher order interactions.

摘要

药物之间的相互作用在多药治疗的杀伤效果中起着关键作用。三药相互作用的理论和实验方面的最新进展使得能够寻找出新兴相互作用——即那些无法从成对相互作用中预测出来的相互作用。先前的研究表明,当对相互作用指标应用重标度方法时,更容易检测成对相互作用之间的协同作用和拮抗作用。然而,尚无研究仔细考察对于新兴相互作用是否可能需要新型的归一化方法。在此,我们基于我们的概念框架提出了几种重标度方法,以增强对高阶药物相互作用的分类。为了选择能最佳区分协同作用、拮抗作用和相加作用的重标度方法,我们在14种抗生素的单一、成对和三联药物组合存在的情况下进行了细菌生长实验。我们发现我们的一种重标度方法在区分协同和拮抗新兴相互作用方面远比任何其他方法要好。使用我们的新方法,我们发现约50%的新兴相互作用是相加性的,远低于先前报道的大于90%的相加性。我们得出结论,高阶新兴相互作用比之前认为的要普遍得多,并且我们认为这些关于药物的发现表明适当的重标度对于推断高阶相互作用至关重要。

相似文献

9
Guided screen for synergistic three-drug combinations.协同三药组合的导向筛选。
PLoS One. 2020 Jul 9;15(7):e0235929. doi: 10.1371/journal.pone.0235929. eCollection 2020.

引用本文的文献

8
The context-dependent, combinatorial logic of BMP signaling.BMP 信号的上下文相关、组合逻辑。
Cell Syst. 2022 May 18;13(5):388-407.e10. doi: 10.1016/j.cels.2022.03.002. Epub 2022 Apr 13.
9
Pattern Discovery from High-Order Drug-Drug Interaction Relations.从高阶药物-药物相互作用关系中发现模式
J Healthc Inform Res. 2018 Jun 18;2(3):272-304. doi: 10.1007/s41666-018-0020-2. eCollection 2018 Sep.

本文引用的文献

1
8
Bacterial evolution of antibiotic hypersensitivity.抗生素过敏的细菌进化。
Mol Syst Biol. 2013 Oct 29;9:700. doi: 10.1038/msb.2013.57.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验