Suppr超能文献

Effect of indomethacin and a free radical scavenger on cerebral blood flow and edema after cerebral artery occlusion in cats.

作者信息

Johshita H, Asano T, Hanamura T, Takakura K

机构信息

Department of Neurosurgery, Saitama Medical Center, Saitama Medical School, Kawagoe, Japan.

出版信息

Stroke. 1989 Jun;20(6):788-94. doi: 10.1161/01.str.20.6.788.

Abstract

Using the middle cerebral artery occlusion model in cats, we evaluated the possible role of the cyclooxygenase pathway in alterations of local cerebral blood flow and the development of cortical edema following prolonged ischemia or recirculation. We divided 57 cats into three groups, and each cat received saline (control), indomethacin, or the free radical scavenger ONO-3144. Each group was subdivided into prolonged ischemia (4 hours of occlusion: PI) and recirculation (2 hours of occlusion followed by 2 hours of recirculation: RC) subgroups. We compared local cerebral blood flow and cortical specific gravity between the PI and RC subgroups of the control and drug-treated groups. In the PI subgroup, indomethacin did not influence the time course of local cerebral blood flow but significantly worsened the decrease in cortical specific gravity. On the other hand, indomethacin significantly improved postischemic hypoperfusion and ameliorated the decrease in cortical specific gravity in the RC subgroup. The effects of ONO-3144 were similar to those of indomethacin, except that ONO-3144 did not affect cortical specific gravity in the PI subgroup. Indomethacin inhibits cyclooxygenase activity, whereas ONO-3144 scavenges the oxygen-centered radical released in the conversion of prostaglandin G2 to prostaglandin H2. Thus, prostaglandins do not seem to play a major role in the occurrence of brain edema due to prolonged regional ischemia. By contrast, oxygen-centered radicals released from the cyclooxygenase pathway appear to be at least partially responsible for the occurrence of recirculation-induced edema and postischemic hypoperfusion.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验