Suppr超能文献

具有牛顿加热和均相-非均相反应的拉伸圆柱引起的磁流体动力学流动

Magnetohydrodynamic Flow by a Stretching Cylinder with Newtonian Heating and Homogeneous-Heterogeneous Reactions.

作者信息

Hayat T, Hussain Zakir, Alsaedi A, Farooq M

机构信息

Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan.

Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589, Saudi Arabia.

出版信息

PLoS One. 2016 Jun 9;11(6):e0156955. doi: 10.1371/journal.pone.0156955. eCollection 2016.

Abstract

This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears.

摘要

本文研究了拉伸圆柱作用下鲍威尔-艾林流体磁流体动力学(MHD)流动中均匀-非均匀反应和牛顿加热的影响。动量、能量和浓度的非线性偏微分方程被简化为非线性常微分方程。利用同伦分析法(HAM)得到了动量、能量和反应方程的收敛解。该方法对于求解高度非线性微分方程的级数解非常有效。它不像其他方法(如摄动法、δ-摄动展开法等)那样依赖于任何小参数或大参数。随着近似阶数的增加,我们能得到更精确的结果。绘制并讨论了不同参数对速度、温度和浓度分布的影响。还在极限意义上对本研究与先前发表的工作进行了比较。计算并分析了表面摩擦系数和努塞尔数的数值。结果表明,对于较大的鲍威尔-艾林流体参数,流动加速。当鲍威尔-艾林流体参数增大时,温度分布进一步降低,浓度分布增大。浓度分布是均匀反应参数的递减函数,而异质反应参数则呈现相反的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d8/4900525/4f66f261b9ba/pone.0156955.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验