Department of Physics & Astronomy, University of British Columbia , Vancouver, British Columbia V6T 1Z1, Canada.
Nano Lett. 2016 Jul 13;16(7):4224-9. doi: 10.1021/acs.nanolett.6b01163. Epub 2016 Jun 13.
The properties of iron-based superconductors (Fe-SCs) can be varied dramatically with the introduction of dopants and atomic defects. As a pressing example, FeSe, parent phase of the highest-Tc Fe-SC, exhibits prevalent defects with atomic-scale "dumbbell" signatures as imaged by scanning tunneling microscopy (STM). These defects spoil superconductivity when their concentration exceeds 2.5%. Resolving their chemical identity is a prerequisite to applications such as nanoscale patterning of superconducting/nonsuperconducting regions in FeSe as well as fundamental questions such as the mechanism of superconductivity and the path by which the defects destroy it. We use STM and density functional theory to characterize and identify the dumbbell defects. In contrast to previous speculations about Se adsorbates or substitutions, we find that an Fe-site vacancy is the most energetically favorable defect in Se-rich conditions and reproduces our observed STM signature. Our calculations shed light more generally on the nature of Se capping, the removal of Fe vacancies via annealing, and their ordering into a √5 × √5 superstructure in FeSe and related alkali-doped compounds.
铁基超导体 (Fe-SC) 的性质可以通过引入掺杂剂和原子缺陷来显著改变。作为一个紧迫的例子,FeSe 是最高 Tc Fe-SC 的母相,通过扫描隧道显微镜 (STM) 成像显示出普遍存在的具有原子尺度“哑铃”特征的缺陷。当这些缺陷的浓度超过 2.5%时,它们会破坏超导性。解析它们的化学身份是应用的前提,例如在 FeSe 中进行超导/非超导区域的纳米级图案化,以及解决超导性的机制和缺陷破坏它的途径等基本问题。我们使用 STM 和密度泛函理论来对哑铃缺陷进行特征和识别。与之前关于硒吸附物或取代物的推测相反,我们发现富硒条件下最有利的缺陷是 Fe 位空位,并且可以重现我们观察到的 STM 特征。我们的计算更普遍地揭示了硒帽层的性质、通过退火去除 Fe 空位以及它们在 FeSe 和相关碱掺杂化合物中有序形成 √5 × √5 超结构的性质。