School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
Department of Neurobiology, University of Vienna, 1090 Vienna, Austria; Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany.
Acta Biomater. 2016 Sep 1;41:40-51. doi: 10.1016/j.actbio.2016.06.009. Epub 2016 Jun 6.
Highly sensitive lyriform organs located on the legs of the wandering spider Cupiennius salei allow the spider to detect nanometer-scale strains in the exoskeleton resulting from locomotion or substrate vibrations. Morphological features of the lyriform organs result in their specialization and selective sensitivity to specific mechanical stimuli, which make them interesting for bioinspired strain sensors. Here we utilize atomic force microscopy (AFM)-based force spectroscopy to probe nano-scale mechanical properties of the covering membrane of two lyriform organs found on Cupiennius salei: the vibration sensitive metatarsal lyriform organ (HS10) and the proprioreceptive tibial lyriform organ (HS8). Force distance curves (FDCs) obtained from AFM measurements displayed characteristic multi-layer structure behavior, with calculated elastic moduli ranging from 150MPa to 500MPa for different regions and indentation depths. In addition, we probed the lyriform organs with a large radius tip, which allowed for probing structural deformation by the application of high forces and large scale deformations without damaging the surface. The viscoelastic behavior of the sensor materials observed in this probing suggests mechanical relaxation times potentially playing a role in the time-dependent behavior of the lyriform organs.
Highly sensitive lyriform organs located on the legs of the wandering spider Cupiennius salei allow the spider to detect nanometer-scale strains in the exoskeleton resulting from locomotion or substrate vibrations. Morphological features of the lyriform organs result in their specialization and selective sensitivity to specific mechanical stimuli, which make them an interesting for bioinspired strain sensors. Here we utilize atomic force microscopy (AFM)-based force spectroscopy to probe nano-scale mechanical properties of the covering membrane of two lyriform organs found on Cupiennius salei: the vibration sensitive metatarsal lyriform organ (HS10) and the proprioreceptive tibial lyriform organ (HS8). Force distance curves (FDCs) obtained from AFM measurements displayed characteristic multi-layer structure behavior, with calculated elastic moduli ranging from 150MPa to 500MPa for different regions and indentation depths. The viscoelastic behavior of the sensor materials observed in this probing suggests mechanical relaxation times playing a role in the time-dependent behavior of the lyriform organs.
位于游走蜘蛛 Cupiennius salei 腿部的高灵敏度 lyriform 器官允许蜘蛛检测到由于运动或基质振动而导致外骨骼产生的纳米级应变。lyriform 器官的形态特征导致其专门化和对特定机械刺激的选择性敏感性,这使得它们成为有趣的仿生应变传感器。在这里,我们利用原子力显微镜(AFM)基于力谱法来探测在 Cupiennius salei 上发现的两个 lyriform 器官的覆盖膜的纳米级机械性能:振动敏感的跗骨 lyriform 器官(HS10)和本体感受的胫骨 lyriform 器官(HS8)。从 AFM 测量获得的力距离曲线(FDC)显示出特征的多层结构行为,不同区域和压痕深度的计算弹性模量范围从 150MPa 到 500MPa。此外,我们用大半径尖端探测 lyriform 器官,这允许通过施加高力和大尺度变形来探测结构变形,而不会损坏表面。在这种探测中观察到的传感器材料的粘弹性行为表明,机械弛豫时间可能在 lyriform 器官的时变行为中起作用。
位于游走蜘蛛 Cupiennius salei 腿部的高灵敏度 lyriform 器官允许蜘蛛检测到由于运动或基质振动而导致外骨骼产生的纳米级应变。lyriform 器官的形态特征导致其专门化和对特定机械刺激的选择性敏感性,这使得它们成为有趣的仿生应变传感器。在这里,我们利用原子力显微镜(AFM)基于力谱法来探测在 Cupiennius salei 上发现的两个 lyriform 器官的覆盖膜的纳米级机械性能:振动敏感的跗骨 lyriform 器官(HS10)和本体感受的胫骨 lyriform 器官(HS8)。从 AFM 测量获得的力距离曲线(FDC)显示出特征的多层结构行为,不同区域和压痕深度的计算弹性模量范围从 150MPa 到 500MPa。此外,我们用大半径尖端探测 lyriform 器官,这允许通过施加高力和大尺度变形来探测结构变形,而不会损坏表面。在这种探测中观察到的传感器材料的粘弹性行为表明,机械弛豫时间可能在 lyriform 器官的时变行为中起作用。