Suppr超能文献

阿尔茨海默病的遗传变异 - 分子和大脑网络方法。

Genetic variants in Alzheimer disease - molecular and brain network approaches.

机构信息

Rush Alzheimer's Disease Center, Rush University Medical Center, 600 S Paulina Street, Chicago, Illinois 60612, USA.

Department of Statistics, and Medical Genetics; Centre for Molecular and Medicine and Therapeutics, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada.

出版信息

Nat Rev Neurol. 2016 Jul;12(7):413-27. doi: 10.1038/nrneurol.2016.84. Epub 2016 Jun 10.

Abstract

Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models.

摘要

迟发性阿尔茨海默病(LOAD)的遗传研究旨在确定核心疾病机制,并提供潜在的生物标志物和药物候选物,以改善 AD 的临床护理。然而,由于 LOAD 的复杂性,包括病理异质性和疾病多基因性,从 LOAD 遗传学中提取可行的指导一直具有挑战性。过去,人们试图通过途径分析和小规模实验的集合来总结与 LOAD 相关的遗传变异的影响,以假设几种变异之间存在功能上的趋同。在这篇综述中,我们讨论了分子、细胞和大脑网络的研究如何为与 LOAD 相关的遗传变异的影响提供额外的信息。然后,我们讨论了将这些组学数据集组合成多尺度模型的新兴方法,这些模型在多个生物物理尺度上更全面地描述了与 LOAD 相关的遗传变异的影响。此外,我们强调了将遗传变异和疾病表型与多尺度大脑模型在机制上耦合的临床潜力。

相似文献

1
Genetic variants in Alzheimer disease - molecular and brain network approaches.
Nat Rev Neurol. 2016 Jul;12(7):413-27. doi: 10.1038/nrneurol.2016.84. Epub 2016 Jun 10.
2
Atrophy patterns in early clinical stages across distinct phenotypes of Alzheimer's disease.
Hum Brain Mapp. 2015 Nov;36(11):4421-37. doi: 10.1002/hbm.22927. Epub 2015 Aug 11.
3
Characterization of Genetic Networks Associated with Alzheimer's Disease.
Methods Mol Biol. 2016;1303:459-77. doi: 10.1007/978-1-4939-2627-5_28.
4
Evaluating functional connectivity of executive control network and frontoparietal network in Alzheimer's disease.
Brain Res. 2018 Jan 1;1678:262-272. doi: 10.1016/j.brainres.2017.10.025. Epub 2017 Oct 25.
5
Loss of functional connectivity is greater outside the default mode network in nonfamilial early-onset Alzheimer's disease variants.
Neurobiol Aging. 2015 Oct;36(10):2678-86. doi: 10.1016/j.neurobiolaging.2015.06.029. Epub 2015 Jul 16.
6
Abnormal Brain Network Connectivity in a Triple-Network Model of Alzheimer's Disease.
J Alzheimers Dis. 2019;69(1):237-252. doi: 10.3233/JAD-181097.
7
Functional connectivity changes differ in early and late-onset Alzheimer's disease.
Hum Brain Mapp. 2014 Jul;35(7):2978-94. doi: 10.1002/hbm.22379. Epub 2013 Oct 5.
8
Genomic variants, genes, and pathways of Alzheimer's disease: An overview.
Am J Med Genet B Neuropsychiatr Genet. 2017 Jan;174(1):5-26. doi: 10.1002/ajmg.b.32499.
9
Network abnormalities and interneuron dysfunction in Alzheimer disease.
Nat Rev Neurosci. 2016 Dec;17(12):777-792. doi: 10.1038/nrn.2016.141. Epub 2016 Nov 10.

引用本文的文献

3
Mediterranean diet and dementia: MRI marker evidence from meta-analysis.
Eur J Med Res. 2025 Jan 16;30(1):32. doi: 10.1186/s40001-025-02276-1.
4
Modeling gene interactions in polygenic prediction via geometric deep learning.
Genome Res. 2025 Jan 22;35(1):178-187. doi: 10.1101/gr.279694.124.
5
Genetic-based patient stratification in Alzheimer's disease.
Sci Rep. 2024 Apr 30;14(1):9970. doi: 10.1038/s41598-024-60707-1.
6
Network Comparison with Interpretable Contrastive Network Representation Learning.
J Data Sci Stat Vis. 2022 Sep 7;2(5). doi: 10.52933/jdssv.v2i5.56.
8
Assessment of Alzheimer-related pathologies of dementia using machine learning feature selection.
Alzheimers Res Ther. 2023 Mar 10;15(1):47. doi: 10.1186/s13195-023-01195-9.
9
Omics-based biomarkers discovery for Alzheimer's disease.
Cell Mol Life Sci. 2022 Nov 8;79(12):585. doi: 10.1007/s00018-022-04614-6.
10
Identification of the molecular subgroups in Alzheimer's disease by transcriptomic data.
Front Neurol. 2022 Sep 20;13:901179. doi: 10.3389/fneur.2022.901179. eCollection 2022.

本文引用的文献

1
Relation of genomic variants for Alzheimer disease dementia to common neuropathologies.
Neurology. 2016 Aug 2;87(5):489-96. doi: 10.1212/WNL.0000000000002909. Epub 2016 Jul 1.
2
Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI.
Hum Brain Mapp. 2016 May;37(5):1986-97. doi: 10.1002/hbm.23150. Epub 2016 Mar 25.
3
High-throughput mapping of regulatory DNA.
Nat Biotechnol. 2016 Feb;34(2):167-74. doi: 10.1038/nbt.3468. Epub 2016 Jan 25.
4
Post-GWAS methodologies for localisation of functional non-coding variants: ANGPTL3.
Atherosclerosis. 2016 Mar;246:193-201. doi: 10.1016/j.atherosclerosis.2015.12.009. Epub 2015 Dec 12.
6
Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex.
Neuroscience. 2016 Mar 1;316:344-66. doi: 10.1016/j.neuroscience.2015.12.043. Epub 2015 Dec 31.
7
Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks.
Neuroimage. 2016 Feb 15;127:287-297. doi: 10.1016/j.neuroimage.2015.12.001. Epub 2015 Dec 11.
8
Disrupted rich club network in behavioral variant frontotemporal dementia and early-onset Alzheimer's disease.
Hum Brain Mapp. 2016 Mar;37(3):868-83. doi: 10.1002/hbm.23069. Epub 2015 Dec 17.
9
Dynamic Resting-State Functional Connectivity in Major Depression.
Neuropsychopharmacology. 2016 Jun;41(7):1822-30. doi: 10.1038/npp.2015.352. Epub 2015 Dec 3.
10
The PsychENCODE project.
Nat Neurosci. 2015 Dec;18(12):1707-12. doi: 10.1038/nn.4156.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验