Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
Department of Computer Science, University of Sheffield, Sheffield, S1 4DP, UK.
Alzheimers Res Ther. 2023 Mar 10;15(1):47. doi: 10.1186/s13195-023-01195-9.
Although a variety of brain lesions may contribute to the pathological assessment of dementia, the relationship of these lesions to dementia, how they interact and how to quantify them remains uncertain. Systematically assessing neuropathological measures by their degree of association with dementia may lead to better diagnostic systems and treatment targets. This study aims to apply machine learning approaches to feature selection in order to identify critical features of Alzheimer-related pathologies associated with dementia. We applied machine learning techniques for feature ranking and classification to objectively compare neuropathological features and their relationship to dementia status during life using a cohort (n=186) from the Cognitive Function and Ageing Study (CFAS). We first tested Alzheimer's Disease and tau markers and then other neuropathologies associated with dementia. Seven feature ranking methods using different information criteria consistently ranked 22 out of the 34 neuropathology features for importance to dementia classification. Although highly correlated, Braak neurofibrillary tangle stage, beta-amyloid and cerebral amyloid angiopathy features were ranked the highest. The best-performing dementia classifier using the top eight neuropathological features achieved 79% sensitivity, 69% specificity and 75% precision. However, when assessing all seven classifiers and the 22 ranked features, a substantial proportion (40.4%) of dementia cases was consistently misclassified. These results highlight the benefits of using machine learning to identify critical indices of plaque, tangle and cerebral amyloid angiopathy burdens that may be useful for classifying dementia.
尽管各种脑损伤都可能导致痴呆的病理评估,但这些损伤与痴呆的关系、它们如何相互作用以及如何对其进行量化仍不确定。通过评估与痴呆的关联程度,系统地评估神经病理学测量方法可能会导致更好的诊断系统和治疗靶点。本研究旨在应用机器学习方法进行特征选择,以确定与痴呆相关的阿尔茨海默病相关病理学的关键特征。我们应用机器学习技术进行特征排序和分类,使用认知功能和衰老研究(CFAS)中的队列(n=186)客观比较神经病理学特征及其与生前痴呆状态的关系。我们首先测试了阿尔茨海默病和 tau 标志物,然后测试了与痴呆相关的其他神经病理学。使用七种不同信息准则的特征排序方法一致地将 34 种神经病理学特征中的 22 种进行了排序,以确定其对痴呆分类的重要性。尽管高度相关,但 Braak 神经原纤维缠结阶段、β-淀粉样蛋白和脑淀粉样血管病特征的排名最高。使用前 8 种神经病理学特征的最佳痴呆分类器的敏感性为 79%,特异性为 69%,精度为 75%。然而,当评估所有七个分类器和 22 个排序特征时,相当一部分(40.4%)的痴呆病例被错误分类。这些结果突出了使用机器学习来识别斑块、缠结和脑淀粉样血管病负担的关键指标的优势,这些指标可能有助于对痴呆进行分类。