Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
FEBS J. 2017 Jan;284(2):196-210. doi: 10.1111/febs.13778. Epub 2016 Jul 4.
Mitochondria have crucial functions in the cell, including ATP generation, iron-sulfur cluster biogenesis, nucleotide biosynthesis, and amino acid metabolism. All of these functions require tight regulation on mitochondrial activity and homeostasis. As mitochondria biogenesis is controlled by the nucleus and almost all mitochondrial proteins are encoded by nuclear genes, a tight communication network between mitochondria and the nucleus has evolved, which includes signaling cascades, proteins which are dual-localized to the two compartments, and sensing of mitochondrial products by nuclear proteins. All of these enable a crosstalk between mitochondria and the nucleus that allows the 'ground control' to get information on mitochondria's status. Such information facilitates the creation of a cellular balance of mitochondrial status with energetic needs. This communication also allows a transcriptional response in case mitochondrial function is impaired aimed to restore mitochondrial homeostasis. As mitochondrial dysfunction is related to a growing number of genetic diseases as well as neurodegenerative conditions and aging, elucidating the mechanisms governing the mitochondrial/nuclear communication should progress a better understanding of mitochondrial dysfunctions.
线粒体在细胞中具有至关重要的功能,包括 ATP 生成、铁硫簇生物发生、核苷酸生物合成和氨基酸代谢。所有这些功能都需要对线粒体活性和动态平衡进行严格的调节。由于线粒体生物发生受核控制,并且几乎所有线粒体蛋白都由核基因编码,因此线粒体和核之间已经进化出了一个紧密的通讯网络,其中包括信号级联、双定位到两个隔室的蛋白质以及核蛋白对线粒体产物的感应。所有这些使线粒体和核之间能够进行交叉对话,从而使“地面控制”能够获得有关线粒体状态的信息。这些信息有助于在能量需求的情况下创建线粒体状态的细胞平衡。这种通讯还允许在发生线粒体功能障碍时进行转录反应,旨在恢复线粒体动态平衡。由于线粒体功能障碍与越来越多的遗传疾病以及神经退行性疾病和衰老有关,阐明调节线粒体/核通讯的机制应该有助于更好地理解线粒体功能障碍。