Logsdon Aric Flint, Lucke-Wold Brandon Peter, Rosen Charles Lee, Huber Jason Delwyn
Department of Pharmaceutical Sciences, West Virginia University, USA; Department of Neurosurgery, West Virginia University, USA.
Department of Neurosurgery, West Virginia University, USA.
J Neurol Disord Stroke. 2014 May-Jun;2(3). Epub 2014 Feb 21.
Endoplasmic reticulum stress is activated following both stroke and traumatic brain injury producing reactive oxgygen species, increasing intracellular calcium levels, and inducing inflammation; however, the timing and duration of activation varies between injuries. Preventing the immediate effects of ischemic/reperfusion injury or traumatic brain injury is challenging due to short onset of injury, but mitigating the secondary effects is a therapeutically targetable option. Preventative therapies using pharmacological agents have been utilized in pre-clinical models of neural injury to ameliorate secondary effects such as apoptosis and neurodegeneration. The connection between ER stress activation, apoptosis, and subsequent neurodegeneration has been proposed, but not yet causally linked. Researchers are now pursuing effective treatment strategies to suppress the secondary effects of neural injury in order to mitigate the development of chronic deficits. Secondary effects such as endoplasimic reticulum stress and neuroinflammation can be prevented in pre-clinical models, but the results have yet to translate to meaningful treatment options for patients. Evidence suggests that targeting the right transcription factors, at the right time, will aid in the prevention of apoptosis and neurodegenerative disease development following neural injury. In this review, we examine therapeutic approaches that target secondary injury and how these may correlate to better treatment options for patients.
内质网应激在中风和创伤性脑损伤后均被激活,产生活性氧,增加细胞内钙水平,并诱导炎症;然而,激活的时间和持续时间在不同损伤之间有所不同。由于损伤发作迅速,预防缺血/再灌注损伤或创伤性脑损伤的即时影响具有挑战性,但减轻继发性影响是一个可进行治疗干预的选择。在神经损伤的临床前模型中,已使用药物制剂进行预防性治疗,以改善诸如细胞凋亡和神经退行性变等继发性影响。内质网应激激活、细胞凋亡和随后的神经退行性变之间的联系已被提出,但尚未建立因果关系。研究人员目前正在寻求有效的治疗策略来抑制神经损伤的继发性影响,以减轻慢性功能障碍的发展。在临床前模型中可以预防诸如内质网应激和神经炎症等继发性影响,但结果尚未转化为对患者有意义的治疗选择。有证据表明,在正确的时间靶向正确的转录因子,将有助于预防神经损伤后细胞凋亡和神经退行性疾病的发展。在这篇综述中,我们研究了针对继发性损伤的治疗方法,以及这些方法如何与更好的患者治疗选择相关联。