Burton M E, Gentle D L, Vasko M R
Clinical Pharmacology Section, Veterans Administration Medical Center, Dallas, TX 75216.
DICP. 1989 Apr;23(4):294-300. doi: 10.1177/106002808902300404.
The purpose of this study is to evaluate the performance of a vancomycin dosing program in predicting dosages necessary to achieve desired serum vancomycin concentrations in a relatively large patient population. With the completion of initial performance evaluation, revised pharmacokinetic parameter estimates derived in the initial evaluation are used to reevaluate program performance. The program uses population estimates of vancomycin's volume of distribution (Vd) and clearance (Cl) to initially predict dosing, then individualizes those estimates by a Bayesian algorithm (iterations) which uses dosing and the resulting serum vancomycin concentration data. Use of the Bayesian forecaster with one iteration significantly increases the calculated Cl value as compared with population estimates; two and three iterations significantly increase both Vd and Cl when compared with population estimates. Absolute values of the predicted minus observed peak serum vancomycin concentrations (accuracy) are 17.7 +/- 14.0, 6.1 +/- 3.6, and 3.4 +/- 2.1 mg/L for dosing using population estimates, Bayesian with one iteration, and Bayesian with two iterations, respectively. Similarly, accuracy of predictions for trough concentrations is 13.8 +/- 12.4, 3.5 +/- 3.2, and 3.2 +/- 2.6 mg/L for each method, respectively. Bias of dosing predictions in achieving desired peak and trough serum vancomycin concentrations is also significantly reduced by using the Bayesian algorithm. Use of the mean Vd and Cl values from three iterations as the starting parameters in a new group of 12 patients significantly improves program performance when compared with use of initial population parameters. Time of sampling for peak serum concentrations has no effect on program performance. In patients with impaired renal function, use of population estimates resulted in less accurate dosing prediction, but this less accurate performance was not observed with use of the Bayesian forecaster. These data demonstrate the accuracy and lack of bias in individualized dosing predictions using the Bayesian dosing method and the ability of revised pharmacokinetic parameter estimates to improve performance.
本研究的目的是评估万古霉素给药方案在预测相对大量患者群体中达到所需血清万古霉素浓度所需剂量方面的性能。在完成初始性能评估后,将初始评估中得出的修订药代动力学参数估计值用于重新评估方案性能。该方案使用万古霉素分布容积(Vd)和清除率(Cl)的群体估计值来初步预测给药剂量,然后通过贝叶斯算法(迭代)对这些估计值进行个体化,该算法使用给药剂量和由此产生的血清万古霉素浓度数据。与群体估计值相比,使用一次迭代的贝叶斯预测器可显著提高计算出的Cl值;与群体估计值相比,两次和三次迭代可显著提高Vd和Cl值。使用群体估计值给药、一次迭代的贝叶斯方法给药和两次迭代的贝叶斯方法给药时,预测的减去观察到的血清万古霉素峰值浓度的绝对值(准确性)分别为17.7±14.0、6.1±3.6和3.4±2.1mg/L。同样,每种方法预测谷浓度的准确性分别为13.8±12.4、3.5±3.2和3.2±2.6mg/L。使用贝叶斯算法也显著降低了在达到所需血清万古霉素峰值和谷值浓度时给药预测的偏差。与使用初始群体参数相比,将三次迭代的平均Vd和Cl值用作一组12名新患者的起始参数可显著提高方案性能。采集血清峰值浓度的时间对方案性能没有影响。在肾功能受损的患者中,使用群体估计值会导致给药预测准确性较低,但使用贝叶斯预测器时未观察到这种准确性较低的情况。这些数据证明了使用贝叶斯给药方法进行个体化给药预测的准确性和无偏差性,以及修订药代动力学参数估计值改善性能的能力。