Suppr超能文献

体外微血管网络的构建与表征以及内皮细胞胞内钙离子浓度和一氧化氮生成的定量测量

Development and Characterization of In Vitro Microvessel Network and Quantitative Measurements of Endothelial [Ca2+]i and Nitric Oxide Production.

作者信息

Xu Sulei, Li Xiang, Liu Yuxin, He Pingnian

机构信息

Department of Cellular and Molecular Physiology, College of Medicine, Penn State University.

Lane Department of Computer Science and Electrical Engineering, West Virginia University.

出版信息

J Vis Exp. 2016 May 19(111):54014. doi: 10.3791/54014.

Abstract

Endothelial cells (ECs) lining the blood vessel walls in vivo are constantly exposed to flow, but cultured ECs are often grown under static conditions and exhibit a pro-inflammatory phenotype. Although the development of microfluidic devices has been embraced by engineers over two decades, their biological applications remain limited. A more physiologically relevant in vitro microvessel model validated by biological applications is important to advance the field and bridge the gaps between in vivo and in vitro studies. Here, we present detailed procedures for the development of cultured microvessel network using a microfluidic device with a long-term perfusion capability. We also demonstrate its applications for quantitative measurements of agonist-induced changes in EC [Ca(2+)]i and nitric oxide (NO) production in real time using confocal and conventional fluorescence microscopy. The formed microvessel network with continuous perfusion showed well-developed junctions between ECs. VE-cadherin distribution was closer to that observed in intact microvessels than statically cultured EC monolayers. ATP-induced transient increases in EC [Ca(2+)]i and NO production were quantitatively measured at individual cell levels, which validated the functionality of the cultured microvessels. This microfluidic device allows ECs to grow under a well-controlled, physiologically relevant flow, which makes the cell culture environment closer to in vivo than that in the conventional, static 2D cultures. The microchannel network design is highly versatile, and the fabrication process is simple and repeatable. The device can be easily integrated to the confocal or conventional microscopic system enabling high resolution imaging. Most importantly, because the cultured microvessel network can be formed by primary human ECs, this approach will serve as a useful tool to investigate how pathologically altered blood components from patient samples affect human ECs and provide insight into clinical issues. It also can be developed as a platform for drug screening.

摘要

体内血管壁内衬的内皮细胞(ECs)持续暴露于血流中,但培养的内皮细胞通常在静态条件下生长,并表现出促炎表型。尽管微流控设备的开发在过去二十多年里一直受到工程师们的青睐,但其生物学应用仍然有限。一种经过生物学应用验证的、更具生理相关性的体外微血管模型对于推动该领域发展以及弥合体内和体外研究之间的差距至关重要。在此,我们展示了使用具有长期灌注能力的微流控设备开发培养微血管网络的详细程序。我们还展示了其应用,即使用共聚焦和传统荧光显微镜实时定量测量激动剂诱导的内皮细胞[Ca(2+)]i变化和一氧化氮(NO)生成。形成的具有连续灌注的微血管网络显示内皮细胞之间连接良好。与静态培养的内皮细胞单层相比,VE-钙黏蛋白的分布更接近在完整微血管中观察到的情况。在单个细胞水平上定量测量了ATP诱导的内皮细胞[Ca(2+)]i和NO生成的瞬时增加,这验证了培养微血管的功能。这种微流控设备允许内皮细胞在可控的、具有生理相关性的血流条件下生长,这使得细胞培养环境比传统的静态二维培养更接近体内环境。微通道网络设计具有高度通用性,制造过程简单且可重复。该设备可以轻松集成到共聚焦或传统显微镜系统中,实现高分辨率成像。最重要的是,由于培养的微血管网络可以由原代人内皮细胞形成,这种方法将成为一种有用的工具,用于研究来自患者样本的病理改变的血液成分如何影响人内皮细胞,并深入了解临床问题。它还可以开发成为药物筛选平台。

相似文献

2
In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i.
PLoS One. 2015 May 12;10(5):e0126797. doi: 10.1371/journal.pone.0126797. eCollection 2015.
3
Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks.
Am J Physiol Heart Circ Physiol. 2022 Jan 1;322(1):H71-H86. doi: 10.1152/ajpheart.00478.2021. Epub 2021 Nov 12.
4
Impact of Matrix Gel Variations on Primary Culture of Microvascular Endothelial Cell Function.
Microcirculation. 2024 Jul;31(5):e12859. doi: 10.1111/micc.12859. Epub 2024 May 31.
6
7
α-Klotho expression determines nitric oxide synthesis in response to FGF-23 in human aortic endothelial cells.
PLoS One. 2017 May 2;12(5):e0176817. doi: 10.1371/journal.pone.0176817. eCollection 2017.
8
Temporal and spatial correlation of platelet-activating factor-induced increases in endothelial [Ca²⁺]i, nitric oxide, and gap formation in intact venules.
Am J Physiol Heart Circ Physiol. 2011 Nov;301(5):H1788-97. doi: 10.1152/ajpheart.00599.2011. Epub 2011 Aug 26.
10
Nitric oxide releasing hydrogel promotes endothelial differentiation of mouse embryonic stem cells.
Acta Biomater. 2017 Nov;63:190-199. doi: 10.1016/j.actbio.2017.08.037. Epub 2017 Aug 30.

引用本文的文献

2
Nitric oxide modelling and its bioavailability influenced by red blood cells.
J R Soc Interface. 2024 Dec;21(221):20240458. doi: 10.1098/rsif.2024.0458. Epub 2024 Dec 18.
3
Increased circulating microparticles contribute to severe infection and adverse outcomes of COVID-19 in patients with diabetes.
Am J Physiol Heart Circ Physiol. 2022 Dec 1;323(6):H1176-H1193. doi: 10.1152/ajpheart.00409.2022. Epub 2022 Oct 21.
4
Multicellular Cell Seeding on a Chip: New Design and Optimization towards Commercialization.
Biosensors (Basel). 2022 Aug 1;12(8):587. doi: 10.3390/bios12080587.
5
Leveraging avidin-biotin interaction to quantify permeability property of microvessels-on-a-chip networks.
Am J Physiol Heart Circ Physiol. 2022 Jan 1;322(1):H71-H86. doi: 10.1152/ajpheart.00478.2021. Epub 2021 Nov 12.

本文引用的文献

1
In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i.
PLoS One. 2015 May 12;10(5):e0126797. doi: 10.1371/journal.pone.0126797. eCollection 2015.
3
Bioinspired microfluidic assay for in vitro modeling of leukocyte-endothelium interactions.
Anal Chem. 2014 Aug 19;86(16):8344-51. doi: 10.1021/ac5018716. Epub 2014 Aug 5.
4
5
The present and future role of microfluidics in biomedical research.
Nature. 2014 Mar 13;507(7491):181-9. doi: 10.1038/nature13118.
6
Caveolin-1 scaffolding domain promotes leukocyte adhesion by reduced basal endothelial nitric oxide-mediated ICAM-1 phosphorylation in rat mesenteric venules.
Am J Physiol Heart Circ Physiol. 2013 Nov 15;305(10):H1484-93. doi: 10.1152/ajpheart.00382.2013. Epub 2013 Sep 16.
7
Microfluidics embedded within extracellular matrix to define vascular architectures and pattern diffusive gradients.
Lab Chip. 2013 Aug 21;13(16):3246-52. doi: 10.1039/c3lc50493j. Epub 2013 Jun 20.
8
Engineering of functional, perfusable 3D microvascular networks on a chip.
Lab Chip. 2013 Apr 21;13(8):1489-500. doi: 10.1039/c3lc41320a.
9
H2O2-induced endothelial NO production contributes to vascular cell apoptosis and increased permeability in rat venules.
Am J Physiol Heart Circ Physiol. 2013 Jan 1;304(1):H82-93. doi: 10.1152/ajpheart.00300.2012. Epub 2012 Oct 19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验