Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
AWE, Aldermaston, Reading, West Berkshire RG7 4PR, UK.
Nat Commun. 2016 Jun 13;7:ncomms11899. doi: 10.1038/ncomms11899.
Astrophysical flows exhibit rich behaviour resulting from the interplay of different forms of energy-gravitational, thermal, magnetic and radiative. For magnetic cataclysmic variable stars, material from a late, main sequence star is pulled onto a highly magnetized (B>10 MG) white dwarf. The magnetic field is sufficiently large to direct the flow as an accretion column onto the poles of the white dwarf, a star subclass known as AM Herculis. A stationary radiative shock is expected to form 100-1,000 km above the surface of the white dwarf, far too small to be resolved with current telescopes. Here we report the results of a laboratory experiment showing the evolution of a reverse shock when both ionization and radiative losses are important. We find that the stand-off position of the shock agrees with radiation hydrodynamic simulations and is consistent, when scaled to AM Herculis star systems, with theoretical predictions.
天体物理流表现出丰富的行为,这是由不同形式的能量——引力、热、磁和辐射相互作用的结果。对于磁激变变星,来自晚期主序星的物质被吸积到一个高度磁化的(B>10 MG)白矮星上。磁场足够大,可以将物质引导成一个吸积柱,朝向白矮星的极区,这种白矮星被称为 AM Herculis 星子类。一个静止的辐射激波预计会在白矮星表面上方 100-1000 公里处形成,这个距离太小,目前的望远镜无法分辨。在这里,我们报告了一个实验室实验的结果,该实验展示了当电离和辐射损失都很重要时反向激波的演化。我们发现,激波的后退位置与辐射流体动力学模拟一致,并且在缩放到 AM Herculis 恒星系统时,与理论预测一致。