Suppr超能文献

一种氨基噻吩并吡啶酮的光氧化反应可产生一种更强效的蛋白酪氨酸磷酸酶4A3(PTP4A3)抑制剂。

Photooxygenation of an amino-thienopyridone yields a more potent PTP4A3 inhibitor.

作者信息

Salamoun Joseph M, McQueeney Kelley E, Patil Kalyani, Geib Steven J, Sharlow Elizabeth R, Lazo John S, Wipf Peter

机构信息

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.

出版信息

Org Biomol Chem. 2016 Jul 6;14(27):6398-402. doi: 10.1039/c6ob00946h.

Abstract

The phosphatase PTP4A3 is an attractive anticancer target, but knowledge of its exact role in cells remains incomplete. A potent, structurally novel inhibitor of the PTP4A family was obtained by photooxygenation of a less active, electron-rich thienopyridone (1). Iminothienopyridinedione 13 displays increased solution stability and is readily obtained by two new synthetic routes that converge in the preparation of 1. The late-stage photooxygenation of 1 to give 13 in high yield highlights the potential of this reaction to modify the structure and properties of a biological lead compound and generate value for expanding the scope of an SAR investigation. Analog 13 should become a valuable tool for further exploration of the role of PTP4A3 in tumor progression.

摘要

磷酸酶PTP4A3是一个颇具吸引力的抗癌靶点,但其在细胞中的确切作用仍不明确。通过对活性较低、富电子的噻吩并吡啶酮(1)进行光氧化反应,得到了一种高效、结构新颖的PTP4A家族抑制剂。亚氨基噻吩并吡啶二酮13在溶液中的稳定性增强,可通过两条新的合成路线轻松获得,这两条路线在制备1的过程中汇聚。1经后期光氧化反应以高产率生成13,突出了该反应在修饰生物先导化合物的结构和性质以及为扩大构效关系(SAR)研究范围创造价值方面的潜力。类似物13应成为进一步探索PTP4A3在肿瘤进展中作用的宝贵工具。

相似文献

1
Photooxygenation of an amino-thienopyridone yields a more potent PTP4A3 inhibitor.
Org Biomol Chem. 2016 Jul 6;14(27):6398-402. doi: 10.1039/c6ob00946h.
3
Next-Generation Cell-Active Inhibitors of the Undrugged Oncogenic PTP4A3 Phosphatase.
J Pharmacol Exp Ther. 2019 Dec;371(3):652-662. doi: 10.1124/jpet.119.262188. Epub 2019 Oct 10.
4
Tapping the therapeutic potential of protein tyrosine phosphatase 4A with small molecule inhibitors.
Bioorg Med Chem Lett. 2019 Aug 15;29(16):2008-2015. doi: 10.1016/j.bmcl.2019.06.048. Epub 2019 Jun 27.
5
Synthesis and evaluation of bifunctional PTP4A3 phosphatase inhibitors activating the ER stress pathway.
Bioorg Med Chem Lett. 2021 Aug 15;46:128167. doi: 10.1016/j.bmcl.2021.128167. Epub 2021 Jun 2.
7
Investigational inhibitors of PTP4A3 phosphatase as antineoplastic agents.
Expert Opin Investig Drugs. 2014 May;23(5):661-73. doi: 10.1517/13543784.2014.892579. Epub 2014 Mar 13.
8
Mechanism of thienopyridone and iminothienopyridinedione inhibition of protein phosphatases.
Medchemcomm. 2019 Apr 5;10(5):791-799. doi: 10.1039/c9md00175a. eCollection 2019 May 1.
9
Allele-specific inhibitors of protein tyrosine phosphatases.
J Am Chem Soc. 2005 Mar 9;127(9):2824-5. doi: 10.1021/ja043378w.

引用本文的文献

1
PRL-3: unveiling a new horizon in cancer therapy.
Acta Pharmacol Sin. 2025 May 8. doi: 10.1038/s41401-025-01563-1.
3
Targeting axonal guidance dependencies in glioblastoma with ROBO1 CAR T cells.
Nat Med. 2024 Oct;30(10):2936-2946. doi: 10.1038/s41591-024-03138-9. Epub 2024 Aug 2.
4
In silico identification of putative druggable pockets in PRL3, a significant oncology target.
Biochem Biophys Rep. 2024 Jul 1;39:101767. doi: 10.1016/j.bbrep.2024.101767. eCollection 2024 Sep.
5
Targeting PRL phosphatases in hematological malignancies.
Expert Opin Ther Targets. 2024 Apr;28(4):259-271. doi: 10.1080/14728222.2024.2344695. Epub 2024 Apr 26.
6
PRL3 as a therapeutic target for novel cancer immunotherapy in multiple cancer types.
Theranostics. 2023 Mar 21;13(6):1876-1891. doi: 10.7150/thno.79265. eCollection 2023.
7
Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders.
Nat Rev Drug Discov. 2023 Apr;22(4):273-294. doi: 10.1038/s41573-022-00618-w. Epub 2023 Jan 24.
8
Disruption of Ovarian Cancer STAT3 and p38 Signaling with a Small-Molecule Inhibitor of PTP4A3 Phosphatase.
J Pharmacol Exp Ther. 2023 Mar;384(3):429-438. doi: 10.1124/jpet.122.001401. Epub 2023 Jan 10.
9
Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy.
Signal Transduct Target Ther. 2022 Jun 4;7(1):177. doi: 10.1038/s41392-022-01038-3.
10
Celecoxib attenuates hepatocellular proliferative capacity during hepatocarcinogenesis by modulating a PTEN/NF-κB/PRL-3 pathway.
RSC Adv. 2019 Jul 2;9(36):20624-20632. doi: 10.1039/c9ra00429g. eCollection 2019 Jul 1.

本文引用的文献

1
Drugging Undruggable Molecular Cancer Targets.
Annu Rev Pharmacol Toxicol. 2016;56:23-40. doi: 10.1146/annurev-pharmtox-010715-103440. Epub 2015 Nov 2.
2
Systematic Evaluation of the Metabolism and Toxicity of Thiazolidinone and Imidazolidinone Heterocycles.
Chem Res Toxicol. 2015 Oct 19;28(10):2019-33. doi: 10.1021/acs.chemrestox.5b00247. Epub 2015 Oct 6.
3
A historical overview of protein kinases and their targeted small molecule inhibitors.
Pharmacol Res. 2015 Oct;100:1-23. doi: 10.1016/j.phrs.2015.07.010. Epub 2015 Jul 21.
4
Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes.
Cell. 2015 Jun 4;161(6):1252-65. doi: 10.1016/j.cell.2015.05.023.
5
Synthesis and biological evaluation of 3-aminoisoquinolin-1(2H)-one based inhibitors of the dual-specificity phosphatase Cdc25B.
Bioorg Med Chem. 2015 Jun 15;23(12):2810-8. doi: 10.1016/j.bmc.2015.01.043. Epub 2015 Jan 31.
6
Late-stage fluorination: fancy novelty or useful tool?
Angew Chem Int Ed Engl. 2015 Mar 9;54(11):3216-21. doi: 10.1002/anie.201410288. Epub 2015 Feb 4.
8
Investigational inhibitors of PTP4A3 phosphatase as antineoplastic agents.
Expert Opin Investig Drugs. 2014 May;23(5):661-73. doi: 10.1517/13543784.2014.892579. Epub 2014 Mar 13.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验