Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada.
Nat Med. 2024 Oct;30(10):2936-2946. doi: 10.1038/s41591-024-03138-9. Epub 2024 Aug 2.
Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood-brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50-100% of mice. Our study identifies a promising multi-targetable PTP4A-ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors.
对遗传毒性疗法的耐药性和肿瘤复发是胶质母细胞瘤(GBM)的标志,GBM 是一种侵袭性脑肿瘤。在这项研究中,我们通过综合基因组分析、在患者来源的 GBM 模型和独立验证的系中进行全基因组遗传扰动筛选,研究了治疗后复发性 GBM 的功能驱动因素。在复发性肿瘤模型中发现了特定的遗传依赖性,与原发性 GBM 前体相比,其伴有突变负担增加和转录本和蛋白质表达的差异。我们的观察结果表明,存在多层遗传反应来驱动肿瘤复发,并表明 PTP4A2(蛋白酪氨酸磷酸酶 4A2)是复发性 GBM 中自我更新、增殖和致瘤性的调节剂。PTP4A2 的遗传扰动或小分子抑制作用通过迂回导向受体 1(ROBO1)及其下游分子发挥作用,利用对 ROBO 信号的功能依赖性。由于泛 PTP4A 抑制剂在体内血脑屏障的通透性较差,我们设计了针对 ROBO1 的第二代嵌合抗原受体(CAR)T 细胞疗法,ROBO1 是在复发性 GBM 标本中富集的细胞表面受体。单次剂量的 ROBO1 靶向 CAR T 细胞使复发性 GBM 的细胞系衍生异种移植(CDX)模型的中位生存期增加了一倍。此外,在成人肺脑转移和小儿复发性髓母细胞瘤的 CDX 模型中,ROBO1 CAR T 细胞可使 50-100%的小鼠肿瘤完全消除。我们的研究确定了一种有前途的多靶标 PTP4A-ROBO1 信号通路,该通路可驱动复发性 GBM 的致瘤性,在其他恶性脑肿瘤中也具有潜力。