Suppr超能文献

针对大型显微镜数据集的自动单粒子检测与跟踪

Automated single particle detection and tracking for large microscopy datasets.

作者信息

Wilson Rhodri S, Yang Lei, Dun Alison, Smyth Annya M, Duncan Rory R, Rickman Colin, Lu Weiping

机构信息

Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK; Edinburgh Super-Resolution Imaging Consortium, www.esric.org.

OmniVision Technologies, Co., Ltd , 4275 Burton Drive, Santa Clara, CA 95054 , USA.

出版信息

R Soc Open Sci. 2016 May 18;3(5):160225. doi: 10.1098/rsos.160225. eCollection 2016 May.

Abstract

Recent advances in optical microscopy have enabled the acquisition of very large datasets from living cells with unprecedented spatial and temporal resolutions. Our ability to process these datasets now plays an essential role in order to understand many biological processes. In this paper, we present an automated particle detection algorithm capable of operating in low signal-to-noise fluorescence microscopy environments and handling large datasets. When combined with our particle linking framework, it can provide hitherto intractable quantitative measurements describing the dynamics of large cohorts of cellular components from organelles to single molecules. We begin with validating the performance of our method on synthetic image data, and then extend the validation to include experiment images with ground truth. Finally, we apply the algorithm to two single-particle-tracking photo-activated localization microscopy biological datasets, acquired from living primary cells with very high temporal rates. Our analysis of the dynamics of very large cohorts of 10 000 s of membrane-associated protein molecules show that they behave as if caged in nanodomains. We show that the robustness and efficiency of our method provides a tool for the examination of single-molecule behaviour with unprecedented spatial detail and high acquisition rates.

摘要

光学显微镜技术的最新进展使得能够以前所未有的空间和时间分辨率从活细胞中获取非常大的数据集。我们处理这些数据集的能力对于理解许多生物过程起着至关重要的作用。在本文中,我们提出了一种自动粒子检测算法,该算法能够在低信噪比的荧光显微镜环境中运行并处理大型数据集。当与我们的粒子链接框架相结合时,它可以提供迄今为止难以处理的定量测量,描述从细胞器到单分子的大量细胞成分的动态变化。我们首先在合成图像数据上验证我们方法的性能,然后将验证扩展到包括带有真实数据的实验图像。最后,我们将该算法应用于两个单粒子跟踪光激活定位显微镜生物数据集,这些数据集是从具有非常高时间速率的活原代细胞中获取的。我们对数万个膜相关蛋白分子的动态分析表明,它们的行为就好像被困在纳米域中一样。我们表明,我们方法的稳健性和效率提供了一种工具,用于以前所未有的空间细节和高采集速率检查单分子行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da59/4892463/56386accad42/rsos160225-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验