Suppr超能文献

利用圆对称性细化粒子位置。

Refining particle positions using circular symmetry.

机构信息

Department of Physics, Umeå University, Umeå, Sweden.

Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.

出版信息

PLoS One. 2017 Apr 12;12(4):e0175015. doi: 10.1371/journal.pone.0175015. eCollection 2017.

Abstract

Particle and object tracking is gaining attention in industrial applications and is commonly applied in: colloidal, biophysical, ecological, and micro-fluidic research. Reliable tracking information is heavily dependent on the system under study and algorithms that correctly determine particle position between images. However, in a real environmental context with the presence of noise including particular or dissolved matter in water, and low and fluctuating light conditions, many algorithms fail to obtain reliable information. We propose a new algorithm, the Circular Symmetry algorithm (C-Sym), for detecting the position of a circular particle with high accuracy and precision in noisy conditions. The algorithm takes advantage of the spatial symmetry of the particle allowing for subpixel accuracy. We compare the proposed algorithm with four different methods using both synthetic and experimental datasets. The results show that C-Sym is the most accurate and precise algorithm when tracking micro-particles in all tested conditions and it has the potential for use in applications including tracking biota in their environment.

摘要

粒子和物体跟踪在工业应用中受到关注,常用于:胶体、生物物理、生态和微流控研究。可靠的跟踪信息严重依赖于所研究的系统和能够正确确定图像之间粒子位置的算法。然而,在存在噪声的实际环境中,包括水中的特定或溶解物质以及低强度和波动的光照条件,许多算法无法获得可靠的信息。我们提出了一种新的算法,即圆形对称算法(C-Sym),用于在噪声条件下高精度和高精准地检测圆形粒子的位置。该算法利用粒子的空间对称性,实现亚像素精度。我们使用合成和实验数据集比较了所提出的算法与四种不同方法的性能。结果表明,在所有测试条件下,C-Sym 是最准确和最精确的跟踪微粒子的算法,它有可能用于包括跟踪生物在其环境中的运动等应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bc4/5389671/5755b9f41fd2/pone.0175015.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验