Research Laboratory of Electronics, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States.
Nano Lett. 2016 Jul 13;16(7):4149-57. doi: 10.1021/acs.nanolett.6b01012. Epub 2016 Jun 17.
In this work, we use electron energy-loss spectroscopy to map the complete plasmonic spectrum of aluminum nanodisks with diameters ranging from 3 to 120 nm fabricated by high-resolution electron-beam lithography. Our nanopatterning approach allows us to produce localized surface plasmon resonances across a wide spectral range spanning 2-8 eV. Electromagnetic simulations using the finite element method support the existence of dipolar, quadrupolar, and hexapolar surface plasmon modes as well as centrosymmetric breathing modes depending on the location of the electron-beam excitation. In addition, we have developed an approach using nanolithography that is capable of meV control over the energy and attosecond control over the lifetime of volume plasmons in these nanodisks. The precise measurement of volume plasmon lifetime may also provide an opportunity to probe and control the DC electrical conductivity of highly confined metallic nanostructures. Lastly, we show the strong influence of the nanodisk boundary in determining both the energy and lifetime of surface plasmons and volume plasmons locally across individual aluminum nanodisks, and we have compared these observations to similar effects produced by scaling the nanodisk diameter.
在这项工作中,我们使用电子能量损失谱来绘制通过高分辨率电子束光刻制造的直径为 3 至 120nm 的铝纳米盘的完整等离子体光谱。我们的纳米图案形成方法允许我们在 2-8eV 的宽光谱范围内产生局域表面等离子体共振。使用有限元方法的电磁模拟支持存在偶极子、四极子和六极子表面等离子体模式以及中心对称呼吸模式,这取决于电子束激发的位置。此外,我们还开发了一种使用纳米光刻的方法,能够在这些纳米盘中对体等离子体的能量进行 meV 控制,并对其寿命进行阿秒控制。精确测量体等离子体寿命也可能提供探测和控制高度限制的金属纳米结构的直流电导率的机会。最后,我们展示了纳米盘边界在确定单个铝纳米盘中表面等离子体和体等离子体的能量和寿命方面的强烈影响,并且我们将这些观察结果与由纳米盘直径缩放产生的类似效应进行了比较。