Suppr超能文献

细胞谱系问题答案的准确性取决于单细胞基因组学数据的质量和数量。

Accuracy of Answers to Cell Lineage Questions Depends on Single-Cell Genomics Data Quality and Quantity.

作者信息

Spiro Adam, Shapiro Ehud

机构信息

Department of Computer Science and Applied Mathematics and Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.

出版信息

PLoS Comput Biol. 2016 Jun 13;12(6):e1004983. doi: 10.1371/journal.pcbi.1004983. eCollection 2016 Jun.

Abstract

Advances in single-cell (SC) genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells, as determined by phylogenetic analysis of the somatic mutations harbored by each cell. Theoretically, complete and accurate knowledge of the genome of each cell of an individual can produce an extremely accurate cell lineage tree of that individual. However, the reality of SC genomics is that such complete and accurate knowledge would be wanting, in quality and in quantity, for the foreseeable future. In this paper we offer a framework for systematically exploring the feasibility of answering cell lineage questions based on SC somatic mutational analysis, as a function of SC genomics data quality and quantity. We take into consideration the current limitations of SC genomics in terms of mutation data quality, most notably amplification bias and allele dropouts (ADO), as well as cost, which puts practical limits on mutation data quantity obtained from each cell as well as on cell sample density. We do so by generating in silico cell lineage trees using a dedicated formal language, eSTG, and show how the ability to answer correctly a cell lineage question depends on the quality and quantity of the SC mutation data. The presented framework can serve as a baseline for the potential of current SC genomics to unravel cell lineage dynamics, as well as the potential contributions of future advancement, both biochemical and computational, for the task.

摘要

单细胞(SC)基因组学的进展使得在通过对每个细胞中存在的体细胞突变进行系统发育分析来确定个体细胞间谱系关系的方法上有了相应的改进。理论上,对个体每个细胞的基因组有完整且准确的了解能够生成该个体极其准确的细胞谱系树。然而,SC基因组学的实际情况是,在可预见的未来,无论是在质量还是数量上,这样完整且准确的知识都将是欠缺的。在本文中,我们提供了一个框架,用于系统地探索基于SC体细胞突变分析回答细胞谱系问题的可行性,这是SC基因组学数据质量和数量的函数。我们考虑了SC基因组学在突变数据质量方面的当前局限性,最显著的是扩增偏差和等位基因缺失(ADO),以及成本,成本对从每个细胞获得的突变数据量以及细胞样本密度都设置了实际限制。我们通过使用一种专用的形式语言eSTG生成计算机模拟的细胞谱系树来做到这一点,并展示了正确回答细胞谱系问题的能力如何取决于SC突变数据的质量和数量。所提出的框架可以作为当前SC基因组学揭示细胞谱系动态的潜力的基线,以及未来生化和计算方面进展对该任务的潜在贡献的基线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41bb/4905655/e66289e06daf/pcbi.1004983.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验