Kraus Virginia Byers, Collins Jamie E, Hargrove David, Losina Elena, Nevitt Michael, Katz Jeffrey N, Wang Susanne X, Sandell Linda J, Hoffmann Steven C, Hunter David J
Duke Molecular Physiology Institute and Division of Rheumatology, Duke University School of Medicine, Durham, North Carolina, USA.
Brigham and Women's Hospital, Boston, Massachusetts, USA.
Ann Rheum Dis. 2017 Jan;76(1):186-195. doi: 10.1136/annrheumdis-2016-209252. Epub 2016 Jun 13.
OBJECTIVE: To investigate a targeted set of biochemical biomarkers as predictors of clinically relevant osteoarthritis (OA) progression. METHODS: Eighteen biomarkers were measured at baseline, 12 months (M) and 24 M in serum (s) and/or urine (u) of cases (n=194) from the OA initiative cohort with knee OA and radiographic and persistent pain worsening from 24 to 48 M and controls (n=406) not meeting both end point criteria. Primary analyses used multivariable regression models to evaluate the association between biomarkers (baseline and time-integrated concentrations (TICs) over 12 and 24 M, transposed to z values) and case status, adjusted for age, sex, body mass index, race, baseline radiographic joint space width, Kellgren-Lawrence grade, pain and pain medication use. For biomarkers with adjusted p<0.1, the c-statistic (area under the curve (AUC)), net reclassification index and the integrated discrimination improvement index were used to further select for hierarchical multivariable discriminative analysis and to determine the most predictive and parsimonious model. RESULTS: The 24 M TIC of eight biomarkers significantly predicted case status (ORs per 1 SD change in biomarker): sCTXI 1.28, sHA 1.22, sNTXI 1.25, uC2C-HUSA 1.27, uCTXII, 1.37, uNTXI 1.29, uCTXIα 1.32, uCTXIβ 1.27. 24 M TIC of uCTXII (1.47-1.72) and uC2C-Human Urine Sandwich Assay (HUSA) (1.36-1.50) both predicted individual group status (pain worsening, joint space loss and their combination). The most predictive and parsimonious combinatorial model for case status consisted of 24 M TIC uCTXII, sHA and sNTXI (AUC 0.667 adjusted). Baseline uCTXII and uCTXIα both significantly predicted case status (OR 1.29 and 1.20, respectively). CONCLUSIONS: Several systemic candidate biomarkers hold promise as predictors of pain and structural worsening of OA.
目的:研究一组针对性的生化生物标志物,以预测临床相关骨关节炎(OA)的进展。 方法:在骨关节炎倡议队列中,对194例膝骨关节炎患者以及406例未达到两个终点标准的对照者的血清(s)和/或尿液(u)在基线、12个月(M)和24个月时测量18种生物标志物。主要分析采用多变量回归模型,评估生物标志物(基线以及12个月和24个月期间的时间积分浓度(TIC),转换为z值)与病例状态之间的关联,并对年龄、性别、体重指数、种族、基线放射学关节间隙宽度、Kellgren-Lawrence分级、疼痛和止痛药物使用情况进行校正。对于校正后p<0.1的生物标志物,使用c统计量(曲线下面积(AUC))、净重新分类指数和综合鉴别改善指数进行进一步筛选,以进行分层多变量判别分析,并确定最具预测性和简约性的模型。 结果:8种生物标志物的24个月TIC显著预测了病例状态(生物标志物每1个标准差变化的比值比):血清CTX-I(sCTXI)为1.28,血清透明质酸(sHA)为1.22,血清NTX-I(sNTXI)为1.25,尿C2C-人尿夹心分析法(uC2C-HUSA)为1.27,尿CTX-II(uCTXII)为1.37,尿NTX-I(uNTXI)为1.29,尿CTX-Iα(uCTXIα)为1.32,尿CTX-Iβ(uCTXIβ)为1.27。尿CTX-II(1.47-1.72)和尿C2C-人尿夹心分析法(HUSA)(1.36-1.50)的24个月TIC均预测了个体组状态(疼痛加重、关节间隙变窄及其组合)。病例状态的最具预测性和简约性的组合模型由24个月TIC的尿CTX-II、血清透明质酸和血清NTX-I组成(校正后AUC为0.667)。基线尿CTX-II和尿CTX-Iα均显著预测了病例状态(比值比分别为1.29和1.20)。 结论:几种全身性候选生物标志物有望成为骨关节炎疼痛和结构恶化的预测指标。
Osteoarthritis Cartilage. 2018-8-23
Arthritis Care Res (Hoboken). 2018-12
Osteoarthritis Cartilage. 2018-8-18
Biomedicines. 2025-7-4
Osteoporos Sarcopenia. 2025-6
J Orthop Translat. 2025-1-22
Osteoarthritis Cartilage. 2015-8
Best Pract Res Clin Rheumatol. 2014-2
Int J Mol Sci. 2013-9-30
Nat Rev Rheumatol. 2012-8-7
Biochem Pharmacol. 2011-9-22
Osteoarthritis Cartilage. 2011-3-23