Suppr超能文献

粘弹性液滴的聚并受阻:多分散双峰液滴

Arrested coalescence of viscoelastic droplets: polydisperse doublets.

作者信息

Dahiya Prerna, Caggioni Marco, Spicer Patrick T

机构信息

School of Chemical Engineering, UNSW Australia, Sydney, Australia.

Microstructured Fluids Group, Procter and Gamble Co., West Chester, OH, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2016 Jul 28;374(2072). doi: 10.1098/rsta.2015.0132.

Abstract

Arrested droplet coalescence produces stable anisotropic shapes and is a key mechanism for microstructure development in foods, petroleum and pharmaceutical formulations. Past work has examined the dynamic elastic arrest of coalescing monodisperse droplet doublets and developed a simple model of doublet strain as a function of physical variables. Although the work describes experimental data well, it is limited to describing same-size droplets. A new model incorporating a generalized description of doublet shape is developed to describe polydisperse doublet formation in more realistic emulsion systems. Polydisperse doublets are shown to arrest at lower strains than monodisperse doublets as a result of the smaller contribution of surface area in a given pair. Larger droplet size ratios have lower relative degrees of strain because coalescence is arrested at an earlier stage than in more monodisperse cases. Experimental observations of polydisperse doublet formation indicate that the model under-predicts arrest strains at low solid levels and small droplet sizes. The discrepancy is hypothesized to be the result of nonlinear elastic deformation at high strains.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.

摘要

被捕集的液滴聚并产生稳定的各向异性形状,是食品、石油和药物制剂微观结构形成的关键机制。过去的研究考察了聚并的单分散液滴双峰的动态弹性捕集,并建立了一个简单的双峰应变模型,该模型是物理变量的函数。虽然这项工作很好地描述了实验数据,但它仅限于描述相同大小的液滴。为了描述更实际乳液体系中的多分散双峰形成,开发了一个包含双峰形状广义描述的新模型。由于给定液滴对中表面积的贡献较小,多分散双峰比单分散双峰在更低的应变下被捕集。较大的液滴尺寸比具有较低的相对应变程度,因为聚并在比单分散情况更早的阶段被捕集。多分散双峰形成的实验观察表明,该模型在低固体含量和小液滴尺寸下对捕集应变的预测偏低。这种差异被认为是高应变下非线性弹性变形的结果。本文是主题为“软界面材料:从基础到配方”特刊的一部分。

相似文献

1
Arrested coalescence of viscoelastic droplets: polydisperse doublets.
Philos Trans A Math Phys Eng Sci. 2016 Jul 28;374(2072). doi: 10.1098/rsta.2015.0132.
2
Arrested coalescence of viscoelastic droplets with internal microstructure.
Faraday Discuss. 2012;158:341-50; discussion 351-70. doi: 10.1039/c2fd20029e.
3
Arrested coalescence of viscoelastic droplets: triplet shape and restructuring.
Soft Matter. 2017 Apr 5;13(14):2686-2697. doi: 10.1039/c6sm02830f.
4
Temperature-Induced Collapse, and Arrested Collapse, of Anisotropic Endoskeleton Droplets.
Langmuir. 2015 Aug 11;31(31):8558-65. doi: 10.1021/acs.langmuir.5b00321. Epub 2015 Jul 28.
5
Atomic force microscopy of emulsion droplets: probing droplet-droplet interactions.
Langmuir. 2004 Jan 6;20(1):116-22. doi: 10.1021/la034835+.
6
Aggregation in viscoelastic emulsion droplet gels with capillarity-driven rearrangements.
Soft Matter. 2020 Jun 17;16(23):5506-5513. doi: 10.1039/c9sm02134e.
8
A microfluidic method to study demulsification kinetics.
Lab Chip. 2012 Mar 21;12(6):1060-70. doi: 10.1039/c2lc20930f. Epub 2012 Jan 3.
10
The jamming elasticity of emulsions stabilized by ionic surfactants.
Soft Matter. 2014 Jul 28;10(28):5040-4. doi: 10.1039/c4sm00389f.

引用本文的文献

1
Differential interactions determine anisotropies at interfaces of RNA-based biomolecular condensates.
Nat Commun. 2025 Apr 11;16(1):3463. doi: 10.1038/s41467-025-58736-z.
2
Phase Transitions of Associative Biomacromolecules.
Chem Rev. 2023 Jul 26;123(14):8945-8987. doi: 10.1021/acs.chemrev.2c00814. Epub 2023 Mar 7.
3
A conceptual framework for understanding phase separation and addressing open questions and challenges.
Mol Cell. 2022 Jun 16;82(12):2201-2214. doi: 10.1016/j.molcel.2022.05.018. Epub 2022 Jun 7.
4
Methods for characterizing the material properties of biomolecular condensates.
Methods Enzymol. 2021;646:143-183. doi: 10.1016/bs.mie.2020.06.009. Epub 2020 Jul 22.
5
Soft interfacial materials: from fundamentals to formulation.
Philos Trans A Math Phys Eng Sci. 2016 Jul 28;374(2072). doi: 10.1098/rsta.2015.0135.

本文引用的文献

1
Watching paint dry; more exciting than it seems.
Soft Matter. 2015 Aug 28;11(32):6353-9. doi: 10.1039/c5sm01505g. Epub 2015 Jul 24.
2
Temperature-Induced Collapse, and Arrested Collapse, of Anisotropic Endoskeleton Droplets.
Langmuir. 2015 Aug 11;31(31):8558-65. doi: 10.1021/acs.langmuir.5b00321. Epub 2015 Jul 28.
3
Simulating defect textures on relaxing nematic shells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):052504. doi: 10.1103/PhysRevE.89.052504. Epub 2014 May 15.
4
Interfacial stability and shape change of anisotropic endoskeleton droplets.
Soft Matter. 2014 Oct 14;10(38):7647-52. doi: 10.1039/c4sm01482k. Epub 2014 Aug 19.
6
Janus particles: synthesis, self-assembly, physical properties, and applications.
Chem Rev. 2013 Jul 10;113(7):5194-261. doi: 10.1021/cr300089t. Epub 2013 Apr 4.
7
Arrested coalescence of viscoelastic droplets with internal microstructure.
Faraday Discuss. 2012;158:341-50; discussion 351-70. doi: 10.1039/c2fd20029e.
8
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
9
Fabrication, assembly, and application of patchy particles.
Macromol Rapid Commun. 2010 Jan 18;31(2):150-68. doi: 10.1002/marc.200900614. Epub 2010 Jan 5.
10
Shear-induced instabilities in oil-in-water emulsions comprising partially crystallized droplets.
Langmuir. 2010 Nov 16;26(22):16782-90. doi: 10.1021/la1027288. Epub 2010 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验