Suppr超能文献

表征生物分子凝聚物材料特性的方法。

Methods for characterizing the material properties of biomolecular condensates.

作者信息

Alshareedah Ibraheem, Kaur Taranpreet, Banerjee Priya R

机构信息

Department of Physics, University at Buffalo, Buffalo, NY, United States.

Department of Physics, University at Buffalo, Buffalo, NY, United States.

出版信息

Methods Enzymol. 2021;646:143-183. doi: 10.1016/bs.mie.2020.06.009. Epub 2020 Jul 22.

Abstract

Biomolecular condensates are membrane-less sub-cellular compartments that perform a plethora of important functions in signaling and storage. The material properties of biomolecular condensates such as viscosity, surface tension, viscoelasticity, and macromolecular diffusion play important roles in regulating their biological functions. Aberrations in these properties have been implicated in various neurodegenerative disorders and certain types of cancer. Unraveling the molecular driving forces that control the fluid structure and dynamics of biomolecular condensates across different length- and time-scales necessitates the application of innovative biophysical methodologies. In this chapter, we discuss major experimental techniques that are widely used to study the material states and dynamics of biomolecular condensates as well as their practical and conceptual limitations. We end this chapter with a discussion on more advanced tools that are currently emerging to address the complex fluid dynamics of these condensates.

摘要

生物分子凝聚物是无膜的亚细胞区室,在信号传导和储存中发挥着众多重要功能。生物分子凝聚物的材料特性,如粘度、表面张力、粘弹性和大分子扩散,在调节其生物学功能中起着重要作用。这些特性的异常与各种神经退行性疾病和某些类型的癌症有关。要揭示在不同长度和时间尺度上控制生物分子凝聚物流体结构和动力学的分子驱动力,需要应用创新的生物物理方法。在本章中,我们将讨论广泛用于研究生物分子凝聚物的材料状态和动力学的主要实验技术,以及它们在实际应用和概念上的局限性。本章最后将讨论目前正在出现的更先进的工具,以解决这些凝聚物复杂的流体动力学问题。

相似文献

1
Methods for characterizing the material properties of biomolecular condensates.
Methods Enzymol. 2021;646:143-183. doi: 10.1016/bs.mie.2020.06.009. Epub 2020 Jul 22.
3
Quantifying surface tension and viscosity in biomolecular condensates by FRAP-ID.
Biophys J. 2024 Oct 1;123(19):3366-3374. doi: 10.1016/j.bpj.2024.07.043. Epub 2024 Aug 8.
5
Label-Free Techniques for Probing Biomolecular Condensates.
ACS Nano. 2024 Apr 23;18(16):10738-10757. doi: 10.1021/acsnano.4c01534. Epub 2024 Apr 12.
6
Determinants of viscoelasticity and flow activation energy in biomolecular condensates.
Sci Adv. 2024 Feb 16;10(7):eadi6539. doi: 10.1126/sciadv.adi6539.
7
RNA contributions to the form and function of biomolecular condensates.
Nat Rev Mol Cell Biol. 2021 Mar;22(3):183-195. doi: 10.1038/s41580-020-0264-6. Epub 2020 Jul 6.
9
Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides.
Nat Commun. 2021 Nov 16;12(1):6620. doi: 10.1038/s41467-021-26733-7.

引用本文的文献

1
Immiscible proteins compete for RNA binding to order condensate layers.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2504778122. doi: 10.1073/pnas.2504778122. Epub 2025 Aug 6.
2
The rheology and interfacial properties of biomolecular condensates.
Biophys Rev. 2025 Jun 30;17(3):867-891. doi: 10.1007/s12551-025-01326-6. eCollection 2025 Jun.
3
Multivalency Controls the Growth and Dynamics of a Biomolecular Condensate.
J Am Chem Soc. 2025 Jul 23;147(29):25242-25253. doi: 10.1021/jacs.5c02947. Epub 2025 Jul 8.
4
Optogenetic storage and release of protein and mRNA in live cells and animals.
Nat Commun. 2025 Jul 7;16(1):6230. doi: 10.1038/s41467-025-61322-y.
5
Material properties of biomolecular condensates emerge from nanoscale dynamics.
Proc Natl Acad Sci U S A. 2025 Jun 10;122(23):e2424135122. doi: 10.1073/pnas.2424135122. Epub 2025 Jun 2.
6
Micropipette aspiration reveals differential RNA-dependent viscoelasticity of nucleolar subcompartments.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2407423122. doi: 10.1073/pnas.2407423122. Epub 2025 May 28.
7
Single-fluorogen imaging reveals distinct environmental and structural features of biomolecular condensates.
Nat Phys. 2025;21(5):778-786. doi: 10.1038/s41567-025-02827-7. Epub 2025 Mar 14.
9
Mysteries of adenovirus packaging.
J Virol. 2025 May 20;99(5):e0018025. doi: 10.1128/jvi.00180-25. Epub 2025 Apr 17.
10
Immiscible proteins compete for RNA binding to order condensate layers.
bioRxiv. 2025 Mar 19:2025.03.18.644007. doi: 10.1101/2025.03.18.644007.

本文引用的文献

1
2
Quantifying Dynamics in Phase-Separated Condensates Using Fluorescence Recovery after Photobleaching.
Biophys J. 2019 Oct 1;117(7):1285-1300. doi: 10.1016/j.bpj.2019.08.030. Epub 2019 Aug 30.
4
Divalent cations can control a switch-like behavior in heterotypic and homotypic RNA coacervates.
Sci Rep. 2019 Aug 21;9(1):12161. doi: 10.1038/s41598-019-48457-x.
5
Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7889-7898. doi: 10.1073/pnas.1821038116. Epub 2019 Mar 29.
6
Molecular Crowding Tunes Material States of Ribonucleoprotein Condensates.
Biomolecules. 2019 Feb 19;9(2):71. doi: 10.3390/biom9020071.
7
Mechanism of DNA-Induced Phase Separation for Transcriptional Repressor VRN1.
Angew Chem Int Ed Engl. 2019 Apr 1;58(15):4858-4862. doi: 10.1002/anie.201810373. Epub 2019 Mar 12.
8
Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps.
Phys Rev Lett. 2018 Dec 21;121(25):258101. doi: 10.1103/PhysRevLett.121.258101.
9
Methods and Strategies to Quantify Phase Separation of Disordered Proteins.
Methods Enzymol. 2018;611:31-50. doi: 10.1016/bs.mie.2018.09.037. Epub 2018 Nov 3.
10
Phase Separation in Biology and Disease.
J Mol Biol. 2018 Nov 2;430(23):4603-4606. doi: 10.1016/j.jmb.2018.09.006. Epub 2018 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验