Suppr超能文献

测定纳米载体中疏水性化合物的药物释放速率。

Determining drug release rates of hydrophobic compounds from nanocarriers.

作者信息

D'Addio Suzanne M, Bukari Abdallah A, Dawoud Mohammed, Bunjes Heike, Rinaldi Carlos, Prud'homme Robert K

机构信息

Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.

Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich-Schiller-Universität Jena, Jena, Germany.

出版信息

Philos Trans A Math Phys Eng Sci. 2016 Jul 28;374(2072). doi: 10.1098/rsta.2015.0128.

Abstract

Obtaining meaningful drug release profiles for drug formulations is essential prior to in vivo testing and for ensuring consistent quality. The release kinetics of hydrophobic drugs from nanocarriers (NCs) are not well understood because the standard protocols for maintaining sink conditions and sampling are not valid owing to mass transfer and solubility limitations. In this work, a new in vitroassay protocol based on 'lipid sinks' and magnetic separation produces release conditions that mimic the concentrations of lipid membranes and lipoproteins in vivo, facilitates separation, and thus allows determination of intrinsic release rates of drugs from NCs. The assay protocol is validated by (i) determining the magnetic separation efficiency, (ii) demonstrating that sink condition requirements are met, and (iii) accounting for drug by completing a mass balance. NCs of itraconazole and cyclosporine A (CsA) were prepared and the drug release profiles were determined. This release protocol has been used to compare the drug release from a polymer stabilized NC of CsA to a solid drug NP of CsA alone. These data have led to the finding that stabilizing block copolymer layers have a retarding effect on drug release from NCs, reducing the rate of CsA release fourfold compared with the nanoparticle without a polymer coating.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.

摘要

在进行体内测试之前以及确保质量一致性方面,获取药物制剂有意义的药物释放曲线至关重要。由于传质和溶解度限制,维持漏槽条件和取样的标准方案对纳米载体(NCs)中疏水性药物的释放动力学并不适用,因此人们对其了解并不充分。在这项工作中,一种基于“脂质漏槽”和磁分离的新体外测定方案产生了能够模拟体内脂质膜和脂蛋白浓度的释放条件,便于分离,从而能够测定药物从纳米载体中的固有释放速率。该测定方案通过以下方式得到验证:(i)确定磁分离效率;(ii)证明满足漏槽条件要求;(iii)通过完成质量平衡来计算药物含量。制备了伊曲康唑和环孢素A(CsA)的纳米载体,并测定了药物释放曲线。该释放方案已用于比较CsA的聚合物稳定纳米载体与单独的CsA固体药物纳米颗粒的药物释放情况。这些数据表明,稳定的嵌段共聚物层对药物从纳米载体中的释放有阻滞作用,与没有聚合物涂层的纳米颗粒相比,CsA的释放速率降低了四倍。本文是主题为“软界面材料:从基础到制剂”特刊的一部分。

相似文献

1
Determining drug release rates of hydrophobic compounds from nanocarriers.
Philos Trans A Math Phys Eng Sci. 2016 Jul 28;374(2072). doi: 10.1098/rsta.2015.0128.
2
Albumin-Assisted Method Allows Assessment of Release of Hydrophobic Drugs From Nanocarriers.
Biotechnol J. 2018 Jan;13(1). doi: 10.1002/biot.201700337. Epub 2017 Sep 25.
4
Intracellular availability of poorly soluble drugs from lipid nanocapsules.
Eur J Pharm Biopharm. 2019 Jun;139:23-32. doi: 10.1016/j.ejpb.2019.03.007. Epub 2019 Mar 7.
5
Porous mannitol carrier for pulmonary delivery of cyclosporine A nanoparticles.
AAPS J. 2017 Mar;19(2):578-586. doi: 10.1208/s12248-016-0039-3. Epub 2017 Jan 9.
6
Modulating drug release profiles by lipid semi solid matrix formulations for BCS class II drug--an in vitro and an in vivo study.
Drug Deliv. 2015 May;22(3):418-26. doi: 10.3109/10717544.2013.878965. Epub 2014 Jan 29.
7
Improved dissolution and pharmacokinetic behavior of cyclosporine A using high-energy amorphous solid dispersion approach.
Int J Pharm. 2010 Oct 31;399(1-2):94-101. doi: 10.1016/j.ijpharm.2010.08.007. Epub 2010 Aug 10.
8
Hydrophobic Ion Pairing of Peptide Antibiotics for Processing into Controlled Release Nanocarrier Formulations.
Mol Pharm. 2018 Jan 2;15(1):216-225. doi: 10.1021/acs.molpharmaceut.7b00824. Epub 2017 Dec 5.
9
Comparison of different in vitro release methods used to investigate nanocarriers intended for dermal application.
Int J Pharm. 2016 Nov 20;513(1-2):247-254. doi: 10.1016/j.ijpharm.2016.09.033. Epub 2016 Sep 11.
10
Release kinetics of an amphiphilic photosensitizer by block-polymer nanoparticles.
Int J Pharm. 2015 Nov 30;495(2):750-60. doi: 10.1016/j.ijpharm.2015.09.032. Epub 2015 Sep 24.

引用本文的文献

2
Drug release study of the chitosan-based nanoparticles.
Heliyon. 2021 Dec 24;8(1):e08674. doi: 10.1016/j.heliyon.2021.e08674. eCollection 2022 Jan.
3
Reverse-dialysis can be misleading for drug release studies in emulsions as demonstrated by NMR dilution experiments.
Int J Pharm. 2021 Oct 25;608:121093. doi: 10.1016/j.ijpharm.2021.121093. Epub 2021 Sep 15.
7
Soft interfacial materials: from fundamentals to formulation.
Philos Trans A Math Phys Eng Sci. 2016 Jul 28;374(2072). doi: 10.1098/rsta.2015.0135.

本文引用的文献

2
Release kinetics study of poorly water-soluble drugs from nanoparticles: are we doing it right?
Mol Pharm. 2015 Mar 2;12(3):997-1003. doi: 10.1021/mp500817h. Epub 2015 Feb 17.
3
A continuous flow method for estimation of drug release rates from emulsion formulations.
Int J Pharm. 2014 Sep 10;472(1-2):276-81. doi: 10.1016/j.ijpharm.2014.06.024. Epub 2014 Jun 16.
6
Flow cytometry as a new approach to investigate drug transfer between lipid particles.
Mol Pharm. 2010 Apr 5;7(2):350-63. doi: 10.1021/mp900130s.
7
Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery.
Nanomedicine. 2010 Feb;6(1):9-24. doi: 10.1016/j.nano.2009.04.008. Epub 2009 May 15.
9
What is a suitable dissolution method for drug nanoparticles?
Pharm Res. 2008 Jul;25(7):1696-701. doi: 10.1007/s11095-008-9560-0. Epub 2008 Mar 5.
10
Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres.
J Control Release. 2008 Apr 21;127(2):137-45. doi: 10.1016/j.jconrel.2008.01.004. Epub 2008 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验