Vågberg Daniel, Olsson Peter, Teitel S
Process & Energy Laboratory, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
Department of Physics, Umeå University, 901 87 Umeå, Sweden.
Phys Rev E. 2016 May;93(5):052902. doi: 10.1103/PhysRevE.93.052902. Epub 2016 May 23.
We carry out constant volume simulations of steady-state shear-driven rheology in a simple model of bidisperse soft-core frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. We discuss in detail the critical scaling ansatz for the shear-driven jamming transition and carry out a detailed scaling analysis of our resulting data for pressure p and shear stress σ. Our analysis determines the critical exponent β that describes the algebraic divergence of the Bagnold transport coefficients lim_{γ[over ̇]→0}p/γ[over ̇]^{2},σ/γ[over ̇]^{2}∼(ϕ_{J}-ϕ)^{-β} as the jamming transition ϕ_{J} is approached from below. For the low strain rates considered in this work, we show that it is still necessary to consider the leading correction-to-scaling term in order to achieve a self-consistent analysis of our data, in which the critical parameters become independent of the size of the window of data used in the analysis. We compare our resulting value β≈5.0±0.4 against previous numerical results and competing theoretical models. Our results confirm that the shear-driven jamming transition in Bagnoldian systems is well described by a critical scaling theory and we relate this scaling theory to the phenomenological constituent laws for dilatancy and friction.
我们在二维双分散软核无摩擦圆盘的简单模型中,使用产生巴格诺尔德流变学的耗散定律,对稳态剪切驱动流变学进行了恒容模拟。我们详细讨论了剪切驱动堵塞转变的临界标度假设,并对压力(p)和剪应力(\sigma)的所得数据进行了详细的标度分析。我们的分析确定了临界指数(\beta),它描述了随着从下方接近堵塞转变(\phi_J),巴格诺尔德输运系数(\lim_{\dot{\gamma}\to0}p/\dot{\gamma}^2,\sigma/\dot{\gamma}^2\sim(\phi_J - \phi)^{-\beta})的代数发散。对于本工作中考虑的低应变率,我们表明为了对我们的数据进行自洽分析,仍然需要考虑领先的标度修正项,其中临界参数变得与分析中使用的数据窗口大小无关。我们将所得的(\beta\approx5.0\pm0.4)值与先前的数值结果和竞争理论模型进行了比较。我们的结果证实,巴格诺尔德系统中的剪切驱动堵塞转变可以用临界标度理论很好地描述,并且我们将这种标度理论与剪胀和摩擦的唯象组成定律联系起来。