Simonato Matheus, Webb John, Kornowski Ran, Vahanian Alec, Frerker Christian, Nissen Henrik, Bleiziffer Sabine, Duncan Alison, Rodés-Cabau Josep, Attizzani Guilherme F, Horlick Eric, Latib Azeem, Bekeredjian Raffi, Barbanti Marco, Lefevre Thierry, Cerillo Alfredo, Hernández José María, Bruschi Giuseppe, Spargias Konstantinos, Iadanza Alessandro, Brecker Stephen, Palma José Honório, Finkelstein Ariel, Abdel-Wahab Mohamed, Lemos Pedro, Petronio Anna Sonia, Champagnac Didier, Sinning Jan-Malte, Salizzoni Stefano, Napodano Massimo, Fiorina Claudia, Marzocchi Antonio, Leon Martin, Dvir Danny
From the Centre for Heart Valve Innovation, Department of Cardiology, St. Paul's Hospital, Vancouver, Canada (M.S., J.W., D.D.); Division of Cardiovascular Surgery, Escola Paulista de Medicina-UNIFESP, São Paulo, Brazil (M.S., J.H.P.); Interventional Cardiology Institute, Cardiology Department, Rabin Medical Center, Petah Tivka, Israel (R.K.); Cardiology Department, Hôpital Bichat-Claude Bernard, Paris, France (A.V.); Department of Cardiology, Asklepios Klinik, Hamburg, Germany (C. Frerker); Department of Cardiology, Odense University Hospital, Denmark (H.N.); Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Munich, Germany (S. Bleiziffer); Echocardiography Service, Royal Brompton and Harefield, London, United Kingdom (A.D.); Québec Heart and Lung Institute, Laval University, Québec City, Canada (J.R.-C.); Cardiovascular Imaging Core Laboratory, Case Western Research University, Cleveland, OH (G.F.A.); Peter Munk Cardiac Centre, University Health Network, University of Toronto, Canada (E.H.); Cardiologia Interventistica ed Emodinamica, Ospedale San Raffaele, Milan, Italy (A.L.); Kardiologie, Angiologie und Pneumologie, Zentrum für Innere Medizin, Universitätsklinikum Heidelberg, Germany (R.B.); Division of Cardiology, Ospedale Ferrarotto, Catania, Italy (M.B.); Institut Cardiovasculaire Paris Sud, Hôpital Jacques Cartier, Massy, France (T.L.); Fondazione Toscana Gabriele Monasterio, L'Ospedale del Cuore G. Pasquinucci, Massa, Italy (A.C.); Unidad de Hemodinámica y Cardiologia Intervencionista, Hospital Universitario Virgen de la Victoria, Malaga, Spain (J.M.H.); Dipartimento Cardiotoracovascolare, Ospedale Niguarda Ca' Granda, Milan, Italy (G.B.); Transcatheter Heart Valve Department, Hygeia Hospital, Athens, Greece (K.S.); UOC Emodinamica-Dipartimento Cardio Toracico, Azienda Ospedaliera Universitaria Senese, Siena, Italy (A.I.); Cardiac Catheterisation Laboratories, St. George's Hospital, London, United Kingdom (S. Brecker); Cardiac Ca
Circ Cardiovasc Interv. 2016 Jun;9(6). doi: 10.1161/CIRCINTERVENTIONS.115.003651.
Transcatheter valve implantation inside failed bioprosthetic surgical valves (valve-in-valve [ViV]) may offer an advantage over reoperation. Supra-annular transcatheter valve position may be advantageous in achieving better hemodynamics after ViV. Our objective was to define targets for implantation that would improve hemodynamics after ViV.
Cases from the Valve-in-Valve International Data (VIVID) registry were analyzed using centralized core laboratory assessment blinded to clinical events. Multivariate analysis was performed to identify independent predictors of elevated postprocedural gradients (mean ≥20 mm Hg). Optimal implantation depths were defined by receiver operating characteristic curve. A total of 292 consecutive patients (age, 78.9±8.7 years; 60.3% male; 157 CoreValve Evolut and 135 Sapien XT) were evaluated. High implantation was associated with significantly lower rates of elevated gradients in comparison with low implantation (CoreValve Evolut, 15% versus 34.2%; P=0.03 and Sapien XT, 18.5% versus 43.5%; P=0.03, respectively). Optimal implantation depths were defined: CoreValve Evolut, 0 to 5 mm; Sapien XT, 0 to 2 mm (0-10% frame height); sensitivities, 91.3% and 88.5%, respectively. The strongest independent correlate for elevated gradients after ViV was device position (high: odds ratio, 0.22; confidence interval, 0.1-0.52; P=0.001), in addition to type of device used (CoreValve Evolut: odds ratio, 0.5; confidence interval, 0.28-0.88; P=0.02) and surgical valve mechanism of failure (stenosis/mixed baseline failure: odds ratio, 3.12; confidence interval, 1.51-6.45; P=0.002).
High implantation inside failed bioprosthetic valves is a strong independent correlate of lower postprocedural gradients in both self- and balloon-expandable transcatheter valves. These clinical evaluations support specific implantation targets to optimize hemodynamics after ViV.
在失效的生物人工心脏瓣膜内行经导管瓣膜植入术(瓣中瓣[ViV])可能比再次手术更具优势。瓣环上方经导管瓣膜位置在ViV术后实现更好的血流动力学方面可能具有优势。我们的目标是确定能改善ViV术后血流动力学的植入靶点。
利用对临床事件不知情的中央核心实验室评估,对来自瓣中瓣国际数据库(VIVID)登记处的病例进行分析。进行多因素分析以确定术后梯度升高(平均≥20 mmHg)的独立预测因素。通过受试者工作特征曲线确定最佳植入深度。共评估了292例连续患者(年龄,78.9±8.7岁;60.3%为男性;157例使用CoreValve Evolut瓣膜,135例使用Sapien XT瓣膜)。与低植入相比,高植入与梯度升高率显著降低相关(CoreValve Evolut瓣膜,15%对34.2%;P = 0.03;Sapien XT瓣膜,18.5%对43.5%;P = 0.03)。确定了最佳植入深度:CoreValve Evolut瓣膜为0至5 mm;Sapien XT瓣膜为0至2 mm(0 - 10%框架高度);敏感性分别为91.3%和88.5%。ViV术后梯度升高的最强独立相关因素是装置位置(高:比值比,0.22;置信区间,0.1 - 0.52;P = 0.001),此外还有所用装置类型(CoreValve Evolut瓣膜:比值比,0.5;置信区间,0.28 - 0.88;P = 0.02)和手术瓣膜的失效机制(狭窄/混合基线失效:比值比,3.12;置信区间,1.51 - 6.45;P = 0.002)。
在失效的生物人工心脏瓣膜内行高植入是自膨胀式和球囊扩张式经导管瓣膜术后梯度降低的有力独立相关因素。这些临床评估支持特定的植入靶点,以优化ViV术后的血流动力学。