Suppr超能文献

一种支持联合疗法合理设计和生物标志物发现的信号可视化工具包:SiViT。

A signaling visualization toolkit to support rational design of combination therapies and biomarker discovery: SiViT.

作者信息

Bown James L, Shovman Mark, Robertson Paul, Boiko Andrei, Goltsov Alexey, Mullen Peter, Harrison David J

机构信息

School of Science, Engineering and Technology, Abertay University, Dundee, DD1 1HG, UK.

School of Arts, Media and Computer Games, Abertay University, Dundee, DD1 1HG, UK.

出版信息

Oncotarget. 2017 May 2;8(18):29657-29667. doi: 10.18632/oncotarget.8747.

Abstract

Targeted cancer therapy aims to disrupt aberrant cellular signalling pathways. Biomarkers are surrogates of pathway state, but there is limited success in translating candidate biomarkers to clinical practice due to the intrinsic complexity of pathway networks. Systems biology approaches afford better understanding of complex, dynamical interactions in signalling pathways targeted by anticancer drugs. However, adoption of dynamical modelling by clinicians and biologists is impeded by model inaccessibility. Drawing on computer games technology, we present a novel visualization toolkit, SiViT, that converts systems biology models of cancer cell signalling into interactive simulations that can be used without specialist computational expertise. SiViT allows clinicians and biologists to directly introduce for example loss of function mutations and specific inhibitors. SiViT animates the effects of these introductions on pathway dynamics, suggesting further experiments and assessing candidate biomarker effectiveness. In a systems biology model of Her2 signalling we experimentally validated predictions using SiViT, revealing the dynamics of biomarkers of drug resistance and highlighting the role of pathway crosstalk. No model is ever complete: the iteration of real data and simulation facilitates continued evolution of more accurate, useful models. SiViT will make accessible libraries of models to support preclinical research, combinatorial strategy design and biomarker discovery.

摘要

靶向癌症治疗旨在破坏异常的细胞信号通路。生物标志物是通路状态的替代物,但由于通路网络的内在复杂性,将候选生物标志物转化为临床实践的成功率有限。系统生物学方法有助于更好地理解抗癌药物靶向的信号通路中复杂的动态相互作用。然而,临床医生和生物学家对动态建模的采用受到模型难以获取的阻碍。利用计算机游戏技术,我们提出了一种新颖的可视化工具包SiViT,它将癌细胞信号传导的系统生物学模型转化为交互式模拟,无需专业的计算专业知识即可使用。SiViT允许临床医生和生物学家直接引入例如功能丧失突变和特定抑制剂。SiViT将这些引入对通路动态的影响进行动画展示,建议进一步的实验并评估候选生物标志物的有效性。在Her2信号传导的系统生物学模型中,我们使用SiViT对预测进行了实验验证,揭示了耐药生物标志物的动态变化,并突出了通路串扰的作用。没有一个模型是完美的:真实数据和模拟的迭代有助于更准确、有用的模型持续发展。SiViT将使模型库可供使用,以支持临床前研究、组合策略设计和生物标志物发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/655b/5444693/dbdd92135da0/oncotarget-08-29657-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验